news    views    podcast    learn    |    about    contribute     republish     events

MIT News


Homepage | Facebook

The mission of MIT is to advance knowledge and educate students in science, technology and other areas of scholarship that will best serve the nation and the world in the 21st century.



by   -   June 14, 2018
Doctoral student Maria Bauza has been exploring the notion of uncertainty when robots pick up, grasp, or push an object. “If the robot could touch the object, have a notion of tactile information, and be able to react to that information, it will have much more success,” she says.
Photo: Tony Pulsone

By Mary Beth O’Leary
With the push of a button, months of hard work were about to be put to the test. Sixteen teams of engineers convened in a cavernous exhibit hall in Nagoya, Japan, for the 2017 Amazon Robotics Challenge. The robotic systems they built were tasked with removing items from bins and placing them into boxes. For graduate student Maria Bauza, who served as task-planning lead for the MIT-Princeton Team, the moment was particularly nerve-wracking.

by   -   June 14, 2018
MIT engineers have created soft, 3-D-printed structures whose movements can be controlled with a wave of a magnet, much like marionettes without the strings.
Photo: Felice Frankel

By Jennifer Chu
MIT engineers have created soft, 3-D-printed structures whose movements can be controlled with a wave of a magnet, much like marionettes without the strings.

by   -   June 1, 2018

A system developed at MIT aims to teach artificial agents a range of chores, including setting the table and making coffee.
Image: MIT CSAIL

By Adam Conner-Simons | Rachel Gordon

For many people, household chores are a dreaded, inescapable part of life that we often put off or do with little care. But what if a robot assistant could help lighten the load?

by   -   June 1, 2018

Two agonist-antagonist myoneural interface devices (AMIs) were surgically created in the patient’s residual limb: One was electrically linked to the robotic ankle joint, and the other to the robotic subtalar joint.
Image: MIT Media Lab/Biomechatronics group. Original artwork by Stephanie Ku.

By Helen Knight

Humans can accurately sense the position, speed, and torque of their limbs, even with their eyes shut. This sense, known as proprioception, allows humans to precisely control their body movements.

by   -   May 25, 2018

Researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) and the Senseable City Lab have designed a fleet of autonomous boats that offer high maneuverability and precise control.
Courtesy of the researchers
By Rob Matheson

The future of transportation in waterway-rich cities such as Amsterdam, Bangkok, and Venice — where canals run alongside and under bustling streets and bridges — may include autonomous boats that ferry goods and people, helping clear up road congestion.

by   -   May 25, 2018

At the International Conference on Robotics and Automation tomorrow, researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) will present a new lane-change algorithm.
By Larry Hardesty

In the field of self-driving cars, algorithms for controlling lane changes are an important topic of study. But most existing lane-change algorithms have one of two drawbacks: Either they rely on detailed statistical models of the driving environment, which are difficult to assemble and too complex to analyze on the fly; or they’re so simple that they can lead to impractically conservative decisions, such as never changing lanes at all.

by   -   May 20, 2018

MIT engineers have developed a new virtual-reality training system for drones that enables a vehicle to “see” a rich, virtual environment while flying in an empty physical space.
Image: William Litant
By Jennifer Chu

Training drones to fly fast, around even the simplest obstacles, is a crash-prone exercise that can have engineers repairing or replacing vehicles with frustrating regularity.

by   -   May 20, 2018
An albatross glider, designed by MIT engineers, skims the Charles River.
Photo: Gabriel Bousquet

By Jennifer Chu

MIT engineers have designed a robotic glider that can skim along the water’s surface, riding the wind like an albatross while also surfing the waves like a sailboat.

by   -   May 7, 2018


A team of MIT researchers tested MapLite on a Toyota Prius outfitted with a range of LIDAR and IMU sensors.
Photo courtesy of CSAIL.

By Adam Conner-Simons | Rachel Gordon

Uber’s recent self-driving car fatality underscores the fact that the technology is still not ready for widespread adoption. The reality is that there aren’t many places where today’s self-driving cars can actually reliably drive. Companies like Google only test their fleets in major cities, where they’ve spent countless hours meticulously labeling the exact 3-D positions of lanes, curbs, and stop signs.

by   -   April 11, 2018
Aude Oliva (right), a principal research scientist at the Computer Science and Artificial Intelligence Laboratory and Dan Gutfreund (left), a principal investigator at the MIT–IBM Watson AI Laboratory and a staff member at IBM Research, are the principal investigators for the Moments in Time Dataset, one of the projects related to AI algorithms funded by the MIT–IBM Watson AI Laboratory.
Photo: John Mottern/Feature Photo Service for IBM

By Meg Murphy
A person watching videos that show things opening — a door, a book, curtains, a blooming flower, a yawning dog — easily understands the same type of action is depicted in each clip.

by   -   March 30, 2018

Associate professor of mechanical engineering Sangbae Kim and his team at the Biomimetic Robotics Lab developed the quadruped robot, the MIT Cheetah.
Photo: David Sella

By Eric Brown

If you were to ask someone to name a new technology that emerged from MIT in the 21st century, there’s a good chance they would name the robotic cheetah. Developed by the MIT Department of Mechanical Engineering’s Biomimetic Robotics Lab under the direction of Associate Professor Sangbae Kim, the quadruped MIT Cheetah has made headlines for its dynamic legged gait, speed, jumping ability, and biomimetic design.

by   -   March 14, 2018

Skydio, a San Francisco-based startup founded by three MIT alumni, is commercializing an autonomous video-capturing drone — dubbed by some as the “selfie drone” — that tracks and films a subject, while freely navigating any environment.
Courtesy of Skydio

By Rob Matheson

If you’re a rock climber, hiker, runner, dancer, or anyone who likes recording themselves while in motion, a personal drone companion can now do all the filming for you — completely autonomously.

Skydio, a San Francisco-based startup founded by three MIT alumni, is commercializing an autonomous video-capturing drone — dubbed by some as the “selfie drone” — that tracks and films a subject, while freely navigating any environment.

by   -   March 8, 2018
“As the momentum builds, developers will be able to set up a ML [machine learning] apparatus just as they set up a database,” says Max Kanter, CEO at Feature Labs. “It will be that simple.”
Courtesy of the Laboratory for Information and Decision Systems

Today, when an enterprise wants to use machine learning to solve a problem, they have to call in the cavalry. Even a simple problem requires multiple data scientists, machine learning experts, and domain experts to come together to agree on priorities and exchange data and information.

by   -   February 28, 2018

PhD student Adriana Schulz was co-lead on AutoSaw, which lets nonexperts customize different items that can then be constructed with the help of robots.
Photo: Jason Dorfman, MIT CSAIL

By Adam Conner-Simons and Rachel Gordon

Every year thousands of carpenters injure their hands and fingers doing dangerous tasks such as sawing.

by   -   February 22, 2018

The “pick-and-place” system consists of a standard industrial robotic arm that the researchers outfitted with a custom gripper and suction cup. They developed an “object-agnostic” grasping algorithm that enables the robot to assess a bin of random objects and determine the best way to grip or suction onto an item amid the clutter, without having to know anything about the object before picking it up.
Image: Melanie Gonick/MIT
By Jennifer Chu

Unpacking groceries is a straightforward albeit tedious task: You reach into a bag, feel around for an item, and pull it out. A quick glance will tell you what the item is and where it should be stored.