Robohub.org
 

Synched gears interlock at 4,500 rpm on state-of-the-art servo system

by
06 October 2013



share this:
Synched gears interlock at 4,500 rpm on a state of the art servo system

These three gears, rotating at 4,500 rpm, are completely in sync, and are running on an AC servo system developed by Mitsubishi Electric.

“Here we’re demonstrating how even if three gears overlap like this, they can be completely prevented from interfering, by moving them with exactly the same timing. This can be done because the motors are controlled with micron-level accuracy. So, there’s no interference, even when they’re running at such high speed.”

“As servo systems are motors, they’re used to drive a variety of machines. Nowadays, they’re used for applications that require extremely high precision, such as mounting smartphone components and coating the glass panels in LCD TVs.”

“This system uses three motors. First, there’s a linear motor, which runs in a straight line downwards. Then, there’s a direct-drive motor, which rotates horizontally, and finally, there’s the motor that turns this gear. By making the timing of the three correspond completely, we can achieve this kind of demonstration. In this demo, the rev rate is 4,500 rpm. The top speed is 6,000 rpm.”

As the three motors in each unit are being controlled by a single multi-axis servo amp, if the timing is correct, the braking energy of one axis can be used as energy for another, in the same way as a regenerative braking system, reducing energy usage.

“This system is currently used in the automotive, chip-making, printing, and food industries. From now on, we think it will be extended to purposes apart from factory automation, such as healthcare.”




DigInfo TV is a Tokyo-based online video news platform dedicated to producing original coverage of cutting edge technology, research and products from Japan.
DigInfo TV is a Tokyo-based online video news platform dedicated to producing original coverage of cutting edge technology, research and products from Japan.





Related posts :



Octopus inspires new suction mechanism for robots

Suction cup grasping a stone - Image credit: Tianqi Yue The team, based at Bristol Robotics Laboratory, studied the structures of octopus biological suckers,  which have superb adaptive s...
18 April 2024, by

Open Robotics Launches the Open Source Robotics Alliance

The Open Source Robotics Foundation (OSRF) is pleased to announce the creation of the Open Source Robotics Alliance (OSRA), a new initiative to strengthen the governance of our open-source robotics so...

Robot Talk Episode 77 – Patricia Shaw

In the latest episode of the Robot Talk podcast, Claire chatted to Patricia Shaw from Aberystwyth University all about home assistance robots, and robot learning and development.
18 March 2024, by

Robot Talk Episode 64 – Rav Chunilal

In the latest episode of the Robot Talk podcast, Claire chatted to Rav Chunilal from Sellafield all about robotics and AI for nuclear decommissioning.
31 December 2023, by

AI holidays 2023

Thanks to those that sent and suggested AI and robotics-themed holiday videos, images, and stories. Here’s a sample to get you into the spirit this season....
31 December 2023, by and

Faced with dwindling bee colonies, scientists are arming queens with robots and smart hives

By Farshad Arvin, Martin Stefanec, and Tomas Krajnik Be it the news or the dwindling number of creatures hitting your windscreens, it will not have evaded you that the insect world in bad shape. ...
31 December 2023, by





Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association