news    views    talk    learn    |    about    contribute     republish     crowdfunding     archives     calls/events

Tech companies’ competitive advantage: Bayes’ Rule and behavioral economics

Bayes_Theorem

Bayes’ Theorem in neon. Image source: Wikimedia Commons

The ‘system’ behind the Google robotic cars … which have driven themselves for hundreds of thousands of miles on the streets of several US states without being involved in an accident, or violating any traffic law, all the while analyzing enormous quantities of data fed to a central onboard computer from radar sensors, cameras and laser-range finders and taking the most optimal, efficient and cost effective route … is built upon the 18th-century math theorem known as Bayes’ Rule.

In 1996 Bill Gates described Microsoft’s competitive advantage as its expertise in Bayesian networks, patenting a spam filter in 1998 that relied on Bayes’ Theorem. Other tech companies quickly followed suit and adapted their systems and programming to include Bayes’ Theorem too.

During World War II Alan Turing had used Bayes’ Theorem to crack the Enigma code, potentially saving millions of lives, and is credited with helping the allied forces victory.

Artificial Intelligence was given a new lease of life when in the early 1980s Professor Judea Pearl of UCLA’s Computer Science Department and Cognitive System Lab introduced Bayesian networks as a representational device. Pearl’s work showed that Bayesian Networks constitute one of the most influential advances in Artificial Intelligence, with applications in a wide range of domains.

Bayes’ Theorem is based on the work of Thomas Bayes as a solution to a problem of inverse probability. It was presented in “An Essay towards solving a Problem in the Doctrine of Chances” read to the Royal Society in 1763 after Bayes’ death (he died in 1761). Put simply, Bayes’ rule is a mathematical relationship between probabilities that allows the probabilities to be updated in light of new information.

Before the advent of increased computer power Bayes’ Theorem was overlooked by most statisticians and scientists, and in most industries. Today, thanks to Professor Pearl, Bayes Theorem is used in robotics, artificial intelligence, machine learning, reinforcement learning and Big Data mining.  IBM’s Watson, perhaps the most well known AI system, in all its intricacies, ultimately relies on the deceivingly simple concept of Bayes’ rule in negotiating the semantic complexities of natural language.

Bayes Theorem is frequently behind the technology development of many of the multi-billion dollar acquisitions we read about, and certainly a core piece of technology behind the billions in profits at leading tech companies – from Google’s search, to the recommendation engines of LinkedIN, Netflix and Amazon – and will play an even more important role in future developments within automation, robotics and Big Data.

Professor Pearl, through his work in the Cognitive System Lab, recognized the problems of human psychology in software development and representation. In 1984 he published a book simply called Heuristics (Intelligent Search Strategies for Computer Problem Solving).

Pearl’s book relied on research by the founder of Behavioral Economics Daniel Kahneman and Amos Tversky and particularly their work with Paul Slovic: Judgment under Uncertainty: Heuristics and Biases. Cambridge University Press, 1982, where they confirmed their own reliance on Bayes Theorem:

Ch.25: Conservatism in human information processing: “Probabilities quantify uncertainty. A probability, according to Bayesians like ourselves, is simply a number between zero and one that represents the extent to which a somewhat idealized person believes a statement to be true… Since such probabilities describe the person who holds the opinion more than the event the opinion is about, they are called personal probabilities.” (Page 359)

Kahneman (Nobel Prize in Economics) and Tversky showed Bayesian methods more closely reflect how humans perceive their environment, respond to new information, and make decisions. The theorem is a landmark of logical reasoning and the first serious triumph of statistical inference; Bayesian methods interpret probability as the degree of plausibility of a statement.

Kahneman and Tversky especially highlighted the heuristics and biases where Bayes’ Rule can overcome our irrational decision-making, and this is why so many of the tech companies are seeking to train their engineers and programming staff with behavioral economics knowledge. We use the availability heuristic to assess probabilities rather than Bayesian equations. We all know that this gives way to all sorts of judgmental errors: a belief in the law of small numbers and a tendency towards hindsight bias. We know that we anchor around irrelevant information and that we take too much comfort in ever more information that seems to provide us confirmation of our beliefs.

The representativeness heuristic

Heuristics are described as judgmental shortcuts that generally get us where we need to go – and quickly – but at the cost of occasionally sending us off course.

When people rely on representativeness to make judgments, they are likely to judge wrongly because the fact that something is more representative does not make it more likely. This heuristic is used because it is an easy computation (think of Zipf’s law and human behavior – the principle of least effort). The problem is that people overestimate their ability to accurately predict the likelihood of an event. Thus it can result in neglect of relevant base rates (base rate fallacy) and other cognitive biases, especially confirmation bias.

The base rate fallacy describes how people often do not take the base rate of an event into account when solving probability problems, and this frequently results in an error in thinking.

Confirmation bias

Confirmation bias is the tendency of people to favor information that confirms their beliefs or hypotheses. Essentially people are prone to misperceive new incoming information as supporting their current beliefs.

It has been found that experts reassess data selectively, depending on their prior hypotheses over time. Bayesian statisticians argue that Bayes’ s theorem is a formally optimal rule about how to revise opinions in the light of evidence. Nevertheless, Bayesian techniques are so far rarely utilized by management researchers or business practitioners in the wider business world.

Eliezer Yudkowsky of the Machine Intelligence Research Institute has written a detailed introduction of Bayes Theorem using behavioral economics examples and machine learning, which I highly recommend.

Time to think Bayesian and Behavioral Economics

As the major tech companies are showing, Bayesian and Behavioral Economics methods are well suited to address the increasingly complex phenomena and problems faced by 21st century researchers and organizations, where very complex data abound and the validity of knowledge and methods are often seen as contextually driven and constructed.

Bayesian methods that treat probability as a measure of uncertainty may be a more natural approach to some high-impact management decisions, such as strategy formation, portfolio management, and decisions whether or not to enter risky markets.

If you are not thinking like a Bayesian, perhaps you should be. 

 

Colin Lewis is a behavioral economist... read more


comments powered by Disqus