Robohub.org
 

Cocktail Bot 4.0


by
27 July 2017



share this:


The Cocktail Bot 4.0 consists of five robots with one high-level goal: Mix one more than 20 possible drink combination for you! But it isn’t as easy as it sounds. After the customer composed his drink by combining liquor, soft drink and ice in a web interface. The robots start to mix the drink on their own. Five robot stations are preparing the order to deliver it to the guests.

The first robot, a Universal Robots UR5, takes a glass out of an industrial dishwasher rack. The challenge here is, that the glasses are placed upside down in the rack and have to be turned. Furthermore, there are two types of glasses – one for long drinks and one for shots like ‘whisky on the rocks’. The problem was mainly solved with the design of custom gripper fingers. They made it possible to grasp, turn and release the different types of glasses without an intermediate manipulation step. Also, some rubber bands increased the friction and made it possible to let the glass slide down smoothly on the belt. After releasing the glass, the glass tracking started to determine the exact pose.

To get to know the exact position of the glass on the conveyor belt an image processing pipeline calculated its pose. Especially, the transparency of the glass itself made it difficult to detect them reliably at every position. Otherwise the ice cubes or the liquor where not poured into the glass, but off target.

While the glass was placed on the center of the conveyor belt by the first robot, the second robot, a Schunk LWA 4P, started to fill its shovel with ice cubes out of an ice box. It is tricky as the ice cubes stick together after some time and they also change their form by melting. Again, a custom designed gripper guaranteed to get the right amount of ice cubes in each glass.

After ice was added the next step was to prepare the liquor. In total, there were four different kinds of shots – gin, whisky, rum and vodka. All of the liquors where in their original bottles and the third robot, a KUKA KR10 in combination with a Robotiq Three-Finger-Gripper, grasped them precisely. A special liquid nozzle made sure that only 4cl of liquor were poured in each glass after the robot placed the bottle opening above the glass. Pouring while following the movement of the glass made this process independent of liquid level or bottle type.

At the end of the first conveyor belt the fourth robot, again a UR5 with a Schunk PG70 gripper, waited for the arrival of the glass. If the guest just ordered a shot the glass was moved onto the second conveyor belt. Otherwise one of the soft drinks was added. Apart from sparkling and tap water, the taping system provided coke, tonic water, bitter lemon and orange juice. When the right amount of soft drink was added to the drink, the long drink glass was also placed on the other belt.

Only one part missing: The straw. While the fourth robot prepared the drink the fifth and biggest robot, a Universal Robots UR10 and a Weiss WSG-25 gripper, started to get a straw out of the straw dispenser standing next to it. After picking one, the arm moved to its waiting pose above the conveyor belt until the glass arrived. Again, custom designed gripper fingers made it possible to pick a straw out of the box as well as grasping the glass filled with liquids.
When the glass was within reach, the gripper released the straw into the glass and the arm approached nicely towards the glass to grasp it and place it on an interactive table. This was used to show the placed orders as well as the current drink making progress.

All the robots had to work synchronized, with almost no free space around them and close distance to the guests. The Robot Operating System (ROS) made it possible, to control all different kind of robotic arms and grippers within one high-level controller. Each robot station was triggered separately to increase the robustness and also the possibilities of extending the demonstrator for future parties.

The Cocktail Bot 4.0 was created and programmed by a small team of researchers from the FZI Research Center for Information Technologies in Karlsruhe, Germany.



tags:


FZI is non-profit, independent research organization focused on the transfer of innovative solutions to industry.
FZI is non-profit, independent research organization focused on the transfer of innovative solutions to industry.





Related posts :



Robot Talk Episode 126 – Why are we building humanoid robots?

  20 Jun 2025
In this special live recording at Imperial College London, Claire chatted to Ben Russell, Maryam Banitalebi Dehkordi, and Petar Kormushev about humanoid robotics.

Gearing up for RoboCupJunior: Interview with Ana Patrícia Magalhães

and   18 Jun 2025
We hear from the organiser of RoboCupJunior 2025 and find out how the preparations are going for the event.

Robot Talk Episode 125 – Chatting with robots, with Gabriel Skantze

  13 Jun 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Gabriel Skantze from KTH Royal Institute of Technology about having natural face-to-face conversations with robots.

Preparing for kick-off at RoboCup2025: an interview with General Chair Marco Simões

and   12 Jun 2025
We caught up with Marco to find out what exciting events are in store at this year's RoboCup.

Interview with Amar Halilovic: Explainable AI for robotics

  10 Jun 2025
Find out about Amar's research investigating the generation of explanations for robot actions.

Robot Talk Episode 124 – Robots in the performing arts, with Amy LaViers

  06 Jun 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Amy LaViers from the Robotics, Automation, and Dance Lab about the creative relationship between humans and machines.

Robot Talk Episode 123 – Standardising robot programming, with Nick Thompson

  30 May 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Nick Thompson from BOW about software that makes robots easier to program.

Congratulations to the #AAMAS2025 best paper, best demo, and distinguished dissertation award winners

  29 May 2025
Find out who won the awards presented at the International Conference on Autonomous Agents and Multiagent Systems last week.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2025.05 - Association for the Understanding of Artificial Intelligence


 












©2025.05 - Association for the Understanding of Artificial Intelligence