news    views    podcast    learn    |    about    contribute     republish    

News

by   -   May 15, 2019
Drone delivery. Credit: Wing

Returning from vacation, my inbox overflowed with emails announcing robot “firsts.” At the same time, my relaxed post-vacation disposition was quickly rocked by the news of the day and recent discussions regarding the extent of AI bias within New York’s financial system. These unrelated incidents are very much connected in representing the paradox of the acceleration of today’s inventions.

by   -   May 12, 2019
Figure 1: Our model-based meta reinforcement learning algorithm enables a legged robot to adapt online in the face of an unexpected system malfunction (note the broken front right leg).

By Anusha Nagabandi and Ignasi Clavera

Humans have the ability to seamlessly adapt to changes in their environments: adults can learn to walk on crutches in just a few seconds, people can adapt almost instantaneously to picking up an object that is unexpectedly heavy, and children who can walk on flat ground can quickly adapt their gait to walk uphill without having to relearn how to walk. This adaptation is critical for functioning in the real world.

by   -   May 12, 2019

Adversarial examples are slightly altered inputs that cause neural networks to make classification mistakes they normally wouldn’t, such as classifying an image of a cat as a dog.
Image: MIT News Office

By Rob Matheson

MIT researchers have devised a method for assessing how robust machine-learning models known as neural networks are for various tasks, by detecting when the models make mistakes they shouldn’t.

by   -   April 28, 2019

By Benjamin Boettner
Along developed riverbanks, physical barriers can help contain flooding and combat erosion. In arid regions, check dams can help retain soil after rainfall and restore damaged landscapes. In construction projects, metal plates can provide support for excavations, retaining walls on slopes, or permanent foundations. All of these applications can be addressed with the use of sheet piles, elements folded from flat material and driven vertically into the ground to form walls and stabilize soil.

by   -   April 27, 2019
MIT engineers have designed a magnetic microrobot that can help push drug-delivery particles into tumor tissue (left). They also employed swarms of naturally magnetic bacteria to achieve the same effect (right).
Image courtesy of the researchers.

By Anne Trafton

MIT engineers have designed tiny robots that can help drug-delivery nanoparticles push their way out of the bloodstream and into a tumor or another disease site. Like crafts in “Fantastic Voyage” — a 1960s science fiction film in which a submarine crew shrinks in size and roams a body to repair damaged cells — the robots swim through the bloodstream, creating a current that drags nanoparticles along with them.

by   -   April 25, 2019

European Robotics Forum, the most influential meeting of the robotics and AI community, held its 10th anniversary edition in Romania. The event was organized Under the High Patronage of the President of Romania and Under the Patronage of the Romanian Presidency of the Council of the European Union.

by   -   April 21, 2019
An automated wheelchair with an exoskeleton arm is designed to help people with varying forms of disability carry out daily tasks independently. Image credit – AIDE, Universidad Miguel Hernandez

by Julianna Photopoulos

Next-generation wheelchairs could incorporate brain-controlled robotic arms and rentable add-on motors in order to help people with disabilities more easily carry out daily tasks or get around a city.

by   -   April 21, 2019


A new “particle simulator” developed by MIT researchers improves robots’ abilities to mold materials into simulated target shapes and interact with solid objects and liquids. This could give robots a refined touch for industrial applications or for personal robotics— such as shaping clay or rolling sticky sushi rice.
Courtesy of the researchers

By Rob Matheson

A new learning system developed by MIT researchers improves robots’ abilities to mold materials into target shapes and make predictions about interacting with solid objects and liquids. The system, known as a learning-based particle simulator, could give industrial robots a more refined touch — and it may have fun applications in personal robotics, such as modelling clay shapes or rolling sticky rice for sushi.

by   -   April 21, 2019

RoCycle can detect if an object is paper, metal, or plastic. CSAIL researchers say that such a system could potentially help enable the convenience of single-stream recycling with lower contamination rates that confirm to China’s new recycling standards.
Photo: Jason Dorfman

By Adam Conner-Simons

Every year trash companies sift through an estimated 68 million tons of recycling, which is the weight equivalent of more than 30 million cars.

by   -   April 21, 2019

By Annie Xie

In many animals, tool-use skills emerge from a combination of observational learning and experimentation. For example, by watching one another, chimpanzees can learn how to use twigs to “fish” for insects. Similarly, capuchin monkeys demonstrate the ability to wield sticks as sweeping tools to pull food closer to themselves. While one might wonder whether these are just illustrations of “monkey see, monkey do,” we believe these tool-use abilities indicate a greater level of intelligence.

by   -   April 7, 2019

Automated, networked truck convoys could save fuel and cut down on driving time. Image credit – MAN Truck & Bus

by Sandrine Ceurstemont
Semi-autonomous cars are expected to hit the roads in Europe next year with truck convoys following a few years later. But before different brands can share the roads, vehicle manufacturers need to agree on standards for automated functions.

by   -   April 7, 2019
Researchers trained a hybrid AI model to answer questions like “Does the red object left of the green cube have the same shape as the purple matte thing?” by feeding it examples of object colors and shapes followed by more complex scenarios involving multi-object comparisons. The model could transfer this knowledge to new scenarios as well as or better than state-of-the-art models using a fraction of the training data.
Image: Justin Johnson

A child who has never seen a pink elephant can still describe one — unlike a computer. “The computer learns from data,” says Jiajun Wu, a PhD student at MIT. “The ability to generalize and recognize something you’ve never seen before — a pink elephant — is very hard for machines.”

by   -   April 7, 2019

Last week’s breaking news story on The Robot Report was unfortunately the demise of Helen Greiner’s company, CyPhy Works (d/b/a Aria Insights). The high-flying startup raised close to $40 million since its creation in 2008, making it the second business founded by an iRobot alum that has shuttered within five months. While it is not immediately clear why the tethered-drone company went bust, it does raise important questions about the long-term market opportunities for leashed robots.

by   -   April 5, 2019

By Frederik Ebert and Stephen Tian

Guiding our fingers while typing, enabling us to nimbly strike a matchstick, and inserting a key in a keyhole all rely on our sense of touch. It has been shown that the sense of touch is very important for dexterous manipulation in humans. Similarly, for many robotic manipulation tasks, vision alone may not be sufficient – often, it may be difficult to resolve subtle details such as the exact position of an edge, shear forces or surface textures at points of contact, and robotic arms and fingers can block the line of sight between a camera and its quarry. Augmenting robots with this crucial sense, however, remains a challenging task.

Our goal is to provide a framework for learning how to perform tactile servoing, which means precisely relocating an object based on tactile information. To provide our robot with tactile feedback, we utilize a custom-built tactile sensor, based on similar principles as the GelSight sensor developed at MIT. The sensor is composed of a deformable, elastomer-based gel, backlit by three colored LEDs, and provides high-resolution RGB images of contact at the gel surface. Compared to other sensors, this tactile sensor sensor naturally provides geometric information in the form of rich visual information from which attributes such as force can be inferred. Previous work using similar sensors has leveraged the this kind of tactile sensor on tasks such as learning how to grasp, improving success rates when grasping a variety of objects.

by   -   April 5, 2019

By Rob Matheson
Researchers have developed computationally simple robots, called particles, that cluster and form a single “particle robot” that moves around, transports objects, and completes other tasks. The work hails from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL), Columbia University, and elsewhere.
Image: Felice Frankel

Taking a cue from biological cells, researchers from MIT, Columbia University, and elsewhere have developed computationally simple robots that connect in large groups to move around, transport objects, and complete other tasks.



Halodi Robotics’ EVEr3: A Full-size Humanoid Robot
May 13, 2019


Are you planning to crowdfund your robot startup?

Need help spreading the word?

Join the Robohub crowdfunding page and increase the visibility of your campaign