Robohub.org
 

Infographic: The making of a collaborative robot

We now live in a world where increasingly co-robots interact with people to improve our productivity and safety. Additional research investments that enable robots to interact with other robots and devices will help ensure U.S. economic growth, increased global competitiveness and improved quality of life. Credit: NSF

We now live in a world where increasingly co-robots interact with people to improve our productivity and safety. Additional research investments that enable robots to interact with other robots and devices will help ensure U.S. economic growth increased global competitiveness and improved quality of life.
Credit: NSF

By: Nisha Cooch, NSF

This month marks the fifth anniversary of the National Robotics Initiative (NRI). The National Science Foundation (NSF) has been an active leader in the program since it was launched by President Obama in 2011 and is proud of the significant progress made so far in robotics.

Advances in fundamental technologies that enable robots to collaborate with humans, as well as with other robots and devices has led to a surge in the interest and use of robotics in our everyday lives. Moving forward, NRI will continue to support robotics research that will help spur innovation in robotics, enhance our economy and national competitiveness, and improve our quality of life.

Critical questions in robotics remain, including the following:

1. How can robots understand the world around them?

Improving sensor capabilities will support robots’ abilities to detect situational information and to integrate that information into models of robots’ surrounding environments.

2. How can robots make high-level decisions in complex situations?

Research in cognition will improve our understanding of how the human brain processes information and will make it easier to program robots so they can interpret different types of information.

3. How can robots and humans interact through language?

Advances in natural language processing and speech will help enable robots to produce and interpret language, as well as to understand and express acoustic, facial and gestural cues that accompany speech.

4. How can robots be impactful in social contexts?

Investigating fundamental aspects of emotion and expression is critical for building human-like robots that can perceive and express subtle emotional signals.

5. How can individual robots execute a range of movements?

Motion research can help provide robots with the mobility and agility required to traverse different terrains, as well as the dexterity to manipulate small objects.

6. How do we ensure robots function optimally?

Studies on quantitative measurement tools will allow for the continuous evaluation of robots, and resiliency research will empower robots to perform despite dysfunctions or failures.

As robots capable of collaboration emerge, new questions will arise. For instance, in a world of collaborative robots, how do we best incorporate collaborative robots into our existing infrastructures? Once robots are integrated, how do we ensure the safety of people, devices and information? NSF is committed to addressing these important issues so the potential of the robotics age translates to significant benefits for society.

NSF’s long-term investments in fundamental science and engineering research such as these projects have led to novel machines that safely partner with people in nearly every environment. Visit NSF.gov/robotics for more stories about the emerging robot generation.

Click to download

Click to download

 



tags: ,


the National Science Foundation (NSF) is an independent federal US agency created to promote the progress of science.
the National Science Foundation (NSF) is an independent federal US agency created to promote the progress of science.





Related posts :



Apertus: a fully open, transparent, multilingual language model

  11 Sep 2025
EPFL, ETH Zurich and the Swiss National Supercomputing Centre (CSCS) released Apertus today, Switzerland’s first large-scale, open, multilingual language model.

Robots to the rescue: miniature robots offer new hope for search and rescue operations

  09 Sep 2025
Small two-wheeled robots, equipped with high-tech sensors, will help to find survivors faster in the aftermath of disasters.

#IJCAI2025 distinguished paper: Combining MORL with restraining bolts to learn normative behaviour

and   04 Sep 2025
The authors introduce a framework for guiding reinforcement learning agents to comply with social, legal, and ethical norms.

Researchers are teaching robots to walk on Mars from the sand of New Mexico

  02 Sep 2025
Researchers are closer to equipping a dog-like robot to conduct science on the surface of Mars

Engineering fantasy into reality

  26 Aug 2025
PhD student Erik Ballesteros is building “Doc Ock” arms for future astronauts.

RoboCup@Work League: Interview with Christoph Steup

and   22 Aug 2025
Find out more about the RoboCup League focussed on industrial production systems.

Interview with Haimin Hu: Game-theoretic integration of safety, interaction and learning for human-centered autonomy

and   21 Aug 2025
Hear from Haimin in the latest in our series featuring the 2025 AAAI / ACM SIGAI Doctoral Consortium participants.

AIhub coffee corner: Agentic AI

  15 Aug 2025
The AIhub coffee corner captures the musings of AI experts over a short conversation.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence