Robohub.org
 

Yeti robot avoids snow traps


by
24 July 2011



share this:

Have you ever skied down an immaculate white slope? Hard to see the bumps, right?

The same is true for the Yeti robot that needs to drive through polar regions that feature obstacles, slopes and different densities of snow. In such low-contrast terrain, vision won’t be able to detect challenging situations that might get the robot stuck. Instead, robots should rely on proprioceptive sensors, such as gyroscopes, accelerometers, motor current and wheel encoders to indirectly ‘feel’ the terrain below.

Using this idea, Trautmann et al. developed an algorithm that makes the robot learn to detect what it ‘feels’ like right before getting stuck (using a Support Vector Machine). The dangerous situations are then classified (using a Hidden Markov Model) and an escape behavior is implemented.

Polar terrain features that present a mobility challenge to the 73kg Yeti robot were determined during field deployments in Greenland and Antarctica. These challenging scenarios were reproduced in Hanover and used to train the robot. Results show that the robot is able to detect tricky situations with an error rate as low as 1.6% for a variety of obstacle geometries, approach angles to obstacles, robot speeds, and snow conditions. Furthermore, the robot is able to recognize the challenge type correctly in 100% of situations.




Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :

“Robot, make me a chair”

  17 Feb 2026
An AI-driven system lets users design and build simple, multicomponent objects by describing them with words.

Robot Talk Episode 144 – Robot trust in humans, with Samuele Vinanzi

  13 Feb 2026
In the latest episode of the Robot Talk podcast, Claire chatted to Samuele Vinanzi from Sheffield Hallam University about how robots can tell whether to trust or distrust people.

How can robots acquire skills through interactions with the physical world? An interview with Jiaheng Hu

and   12 Feb 2026
Find out more about work published at the Conference on Robot Learning (CoRL).

Sven Koenig wins the 2026 ACM/SIGAI Autonomous Agents Research Award

  10 Feb 2026
Sven honoured for his work on AI planning and search.

Robot Talk Episode 143 – Robots for children, with Elmira Yadollahi

  06 Feb 2026
In the latest episode of the Robot Talk podcast, Claire chatted to Elmira Yadollahi from Lancaster University about how children interact with and relate to robots.

New frontiers in robotics at CES 2026

  03 Feb 2026
Henry Hickson reports on the exciting developments in robotics at Consumer Electronics Show 2026.

Robot Talk Episode 142 – Collaborative robot arms, with Mark Gray

  30 Jan 2026
In the latest episode of the Robot Talk podcast, Claire chatted to Mark Gray from Universal Robots about their lightweight robotic arms that work alongside humans.

Robot Talk Episode 141 – Our relationship with robot swarms, with Razanne Abu-Aisheh

  23 Jan 2026
In the latest episode of the Robot Talk podcast, Claire chatted to Razanne Abu-Aisheh from the University of Bristol about how people feel about interacting with robot swarms.


Robohub is supported by:





 













©2026.01 - Association for the Understanding of Artificial Intelligence