news    views    podcast    learn    |    about    contribute     republish    

Do you fancy making yourself an industrial robot to enjoy at home?Jeremy Fielding, a passionate fan of mechanical engineering, does. So he has built one. Good news is: he’s preparing a series of videos to teach you the whole process from scratch. How much power do you need to run 7 motors at one time? If you lose power, how do you prevent the arm from collapsing on you or dropping the load? How do you keep the cost down? He has recorded over 100 hours of video, and he will answer those and many more questions.

Talking Robotics is a series of virtual seminars about Robotics and its interaction with other relevant fields, such as Artificial Intelligence, Machine Learning, Design Research, Human-Robot Interaction, among others. They aim to promote reflections, dialogues, and a place to network. In this seminars compilation, we bring you 7 talks (and a half?) from current roboticists for your enjoyment.

by   -   April 8, 2021

iRobot Corp. unveiled new coding resources through iRobot Education that promote more inclusive, equitable access to STEM education and support social-emotional development. iRobot also updated its iRobot Coding App with the introduction of Python coding support and a new 3D Root coding robot simulator environment that is ideal for hybrid and remote learning landscapes.

In this podcast series of episodes we are going to explain how to create a robotics startup step by step. We are going to learn how to select your co-founders, your team, how to look for investors, how to test your ideas, how to get customers, how to reach your market, how to build your product… Starting from zero, how to build a successful robotics startup.

In recent years, robots have gained artificial vision, touch, and even smell. “Researchers have been giving robots human-like perception,” says MIT Associate Professor Fadel Adib. In a new paper, Adib’s team is pushing the technology a step further. “We’re trying to give robots superhuman perception,” he says.

Mapping is an essential task in many robotics applications. To build a map, it is frequently assumed that the positions of the robots are a priori unknown and need to be estimated during operation. Multi-robot SLAM is a research direction that addresses the collective exploration and mapping of unknown environments by multi-robot systems. Yet, most results so far have been achieved for small groups of robots. Multi-robot SLAM is still a growing field, and a number of research directions are yet to be explored. Among them, swarm SLAM is an alternative, promising approach that takes advantage of the characteristics of robot swarms.

interview by   -   March 29, 2021
Image credit: J. Blumenkamp, Q. Li, H. Zhong

In this episode, Lilly interviews Amanda Prorok, Professor of Computer Science and Technology at the University of Cambridge. Prorok discusses her research on multi-robot and multi-agent systems and learning coordination policies via Graph Neural Networks. They dig into her recent work on self-interested robots and finding explainability in emergent behavior.

by   -   March 27, 2021

TU Delft researchers have designed a robotic ball that ball that rolls around by itself, inviting young children to explore and get active. Right now this autonomous ball is optimised for play, but we know that inventions are often used in unexpected ways. So we ask brasserie chef Lisan Peddemors the question: What if you would use this?

by   -   March 24, 2021

There are some tasks that traditional robots — the rigid and metallic kind — simply aren’t cut out for. Soft-bodied robots, on the other hand, may be able to interact with people more safely or slip into tight spaces with ease. But for robots to reliably complete their programmed duties, they need to know the whereabouts of all their body parts. That’s a tall task for a soft robot that can deform in a virtually infinite number of ways.

Having reached this point I needed a robot – and a way of communicating with it – so that I could both write getRobotData(spec) and test the EBB. But how to do this? I’m working from home during lockdown, and my e-puck robots are all in the lab. Then I remembered that the excellent robot simulator V-REP (now called CoppeliaSim) has a pretty good e-puck model and some nice demo scenes.

The average robot density in the manufacturing industry hit a new global record of 113 units per 10,000 employees. By regions, Western Europe (225 units) and the Nordic European countries (204 units) have the most automated production, followed by North America (153 units) and South East Asia (119 units).

by   -   March 19, 2021
The new technology pairs wireless sensing with artificial intelligence to determine when a patient is using an insulin pen or inhaler, and it flags potential errors in the patient’s administration method. | Image: courtery of the researchers

From swallowing pills to injecting insulin, patients frequently administer their own medication. But they don’t always get it right. Improper adherence to doctors’ orders is commonplace, accounting for thousands of deaths and billions of dollars in medical costs annually. MIT researchers have developed a system to reduce those numbers for some types of medications.

In this technical talk, Chad Jenkins from the University of Michigan posed the following question: “who will pay the cost for the likely mistakes and potential misuse of AI systems?” As he states, “we are increasingly seeing how AI is having a pervasing impact on our lives, both for good and for bad. So, how do we ensure equal opportunity in science and technology?”

Nearly all real-world applications of reinforcement learning involve some degree of shift between the training environment and the testing environment. However, prior work has observed that even small shifts in the environment cause most RL algorithms to perform markedly worse. As we aim to scale reinforcement learning algorithms and apply them in the real world, it is increasingly important to learn policies that are robust to changes in the environment.

by and   -   March 14, 2021

Watch Johanna Austin talk about her journey, make her own career path, and trailblazing a way in STEM!! Johanna Austin was the first female Robotics and Automation Research Engineer in Boeing’s Melbourne based robotics group. She was awarded her Bachelor of Engineering with First Class Honors at RMIT and her Masters of Science in Computer Science at Georgia Tech. Her latest role is as Technical Lead Engineer – Robotics Systems at AOS Group with focus in autonomous systems and distributed AI. Johanna is also a part time helicopter pilot. She shares information about her career journey and her feelings at being the first woman in ten years in her research group, how she handled that and the importance of having women around you at work. Johanna also shows some of the advanced robotics research that she’s been engaged in with Boeing.
Multi-Robot Learning
March 29, 2021

supported by: