Robohub.org
 

Cooperative localization using Kalman filtering


by
26 November 2010



share this:

Kalman filters are used in robotics to correct measurement errors. Imagine trying to precisely predict the position of an outdoor robot. The robot is equipped with a GPS and is able to measure the speed of its wheels (odometry). Only using GPS leads to measurements that are not precise while using only odometry leads to increasingly wrong estimates. Instead, what a Kalman filter does is fuse the information from odometry with the GPS measurements. This is done by, at each step of the robot control, predicting future sensor readings based on the commands given to the robot. The difference between the predicted sensor readings and the actual sensor readings is then used to update the filter. In this manner, the robot is able to improve its position estimate over time.

In work by Huang et al., groups of indoor robots attempt to estimate their global position and orientation using a special type of Kalman filter called the “Extended Kalman Filter”. Since they do not have access to GPS or landmarks in the environment, robots “cooperatively localize” by using odometry and measuring their relative position to neighboring robots. However, Kalman filters can be challenged when the measurements they make do not give them enough information with respect to what they are trying to predict. For example, sensor measurements might only provide meaningful information to correct position estimates but not global orientation. In these cases, the system is “not observable” and the Kalman filter can result in inconsistencies.

To overcome this challenge Huang et al. propose two ways of extending Kalman filters so as to constrain the observability of the system. Results are given in simulation and using four Pioneer I robots that were able to successfully estimate their pose. Odometry measurements were derived from wheel encoders and relative position was computed using an overhead camera thanks to the rectangular tags on each robot shown in the figure below. Results show that both developed algorithms outperform standard extended Kalman filters.

In the future, researchers hope to extend their approach to 3D localization.




Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :



MIT engineers design an aerial microrobot that can fly as fast as a bumblebee

  31 Dec 2025
With insect-like speed and agility, the tiny robot could someday aid in search-and-rescue missions.

Robohub highlights 2025

  29 Dec 2025
We take a look back at some of the interesting blog posts, interviews and podcasts that we've published over the course of the year.

The science of human touch – and why it’s so hard to replicate in robots

  24 Dec 2025
Trying to give robots a sense of touch forces us to confront just how astonishingly sophisticated human touch really is.

Bio-hybrid robots turn food waste into functional machines

  22 Dec 2025
EPFL scientists have integrated discarded crustacean shells into robotic devices, leveraging the strength and flexibility of natural materials for robotic applications.

Robot Talk Episode 138 – Robots in the environment, with Stefano Mintchev

  19 Dec 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Stefano Mintchev from ETH Zürich about robots to explore and monitor the natural environment.

Artificial tendons give muscle-powered robots a boost

  18 Dec 2025
The new design from MIT engineers could pump up many biohybrid builds.

Robot Talk Episode 137 – Getting two-legged robots moving, with Oluwami Dosunmu-Ogunbi

  12 Dec 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Oluwami Dosunmu-Ogunbi from Ohio Northern University about bipedal robots that can walk and even climb stairs.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence