Robohub.org
 

Learning tasks across different environments


by
27 July 2010



share this:

In the future, robots will be expected to learn a task and execute it in a variety of realistic situations. Reinforcement-learning and planning algorithms are exactly intended for that purpose. However, one of the main challenges is to make sure actions learned in one environment can be used in new and unforeseen situations in real time.

To address this challenge, Stolle et al. have imagined a series of algorithms which they demonstrate on complex tasks such as solving a marble maze or making Boston Dynamic’s Little Dog navigate over complex terrain (see video below).

The first ingredient of success relies on making robots learn what action to take based on local features, meaning features as viewed by the robot (e.g. “there is a wall to the right”). These local features can then be recognized in new environments when the robot is in similar situations. Instead, many existing algorithms use global information, for example by saying “perform this action in position (x,y,z)”. Changing the environment however would typically make these global policies useless.

The second ingredient makes robots build libraries containing sequences of actions (trajectories) that can bring a robot from its current state to an aimed goal. Robots then apply the actions from the trajectory nearest to their state to achieve a task. This strategy is interesting because it is not computationally expensive and does not require large amounts of fast memory.

Finally, don’t miss the following video of little-dog climbing over a fence. This special purpose behavior can be used in a variety of situations.




Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :



Teaching robots to map large environments

  05 Nov 2025
A new approach could help a search-and-rescue robot navigate an unpredictable environment by rapidly generating an accurate map of its surroundings.

Robot Talk Episode 131 – Empowering game-changing robotics research, with Edith-Clare Hall

  31 Oct 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Edith-Clare Hall from the Advanced Research and Invention Agency about accelerating scientific and technological breakthroughs.

A flexible lens controlled by light-activated artificial muscles promises to let soft machines see

  30 Oct 2025
Researchers have designed an adaptive lens made of soft, light-responsive, tissue-like materials.

Social media round-up from #IROS2025

  27 Oct 2025
Take a look at what participants got up to at the IEEE/RSJ International Conference on Intelligent Robots and Systems.

Using generative AI to diversify virtual training grounds for robots

  24 Oct 2025
New tool from MIT CSAIL creates realistic virtual kitchens and living rooms where simulated robots can interact with models of real-world objects, scaling up training data for robot foundation models.

Robot Talk Episode 130 – Robots learning from humans, with Chad Jenkins

  24 Oct 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Chad Jenkins from University of Michigan about how robots can learn from people and assist us in our daily lives.

Robot Talk at the Smart City Robotics Competition

  22 Oct 2025
In a special bonus episode of the podcast, Claire chatted to competitors, exhibitors, and attendees at the Smart City Robotics Competition in Milton Keynes.

Robot Talk Episode 129 – Automating museum experiments, with Yuen Ting Chan

  17 Oct 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Yuen Ting Chan from Natural History Museum about using robots to automate molecular biology experiments.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence