Robohub.org
 

Growing bio-inspired shapes with a 300-robot swarm


by
19 December 2018



share this:

Artistic photo taken by Jerry H. Wright showing a hand-made shape generated following an emergent Turing pattern (displayed using the LEDs). The trajectory of one of the moving robots can be seen through long exposure. Jerry also used a filter to see the infrared communication between the robots (white light below the robots reflected on the table). Reprinted with permission from AAAS.


Work by I. Slavkov, D. Carrillo-Zapata, N. Carranza, X. Diego, F. Jansson, J. Kaandorp, S. Hauert, J. Sharpe

Our work published today in Science Robotics describes how we grow fully self-organised shapes using a swarm of 300 coin-sized robots. The work was led by James Sharpe at EMBL and the Centre for Genomic Regulation (CRG) in Barcelona – together with my team at the Bristol Robotics Laboratory and University of Bristol.

Here’s a video summarising the results, or you can read the paper here:

Self-organised shapes

Nature is capable of producing impressive functional shapes throughout embryonic development. Broadly, there are two ways to form these shapes.

1) Top-down control. Cells have access to information about their position through some coordinate system, for example generated through their molecular gradients. Cells use this information to decide their fate, which ultimately creates the shapes. There are beautiful examples of this strategy being used for robot swarms, check here for work by Rubenstein et al. (video).

2) Local self-organisation. Cells generate reaction-diffusion systems, such as those described by Alan Turing, resulting in simple periodic patterns. Cells can use these patterns to decide their fate and the resulting shape.

We use the second strategy, here’s how it works.

Patterning

We start from a swarm of 300 closely packed robots in a disc – each running the same code. Each robot stores two morphogens u and v, which you can think of as virtual chemical signals. Morphogen u activates itself and the other morphogen v, whereas v inhibits itself and the other morphogen u – this is a ‘reaction’ network. ‘Diffusion’ of u and v happens through communication from robot to robot. Symmetry breaking caused by the ‘reaction-diffusion’ system results in spots emerging on the swarm (or stripes if we change the parameters!). Areas with high-levels of morphogens are shown in green – that’s what we call a “Turing spot”.

Tissue movement
In biology, cells may die or multiply depending on their patterning. As we can’t do either of those things with robots, we simply move robots from areas where they are no longer needed to areas of growth. The general idea is that robots that are on the edge of the swarm, and are not in a Turing spot, move along the edge of the swarm until they are near the spot. This causes protrusions to grow at the location of the Turing spots.

Following these simple rules, we are able to grow shapes in a repeatable manner, although all the shapes are slightly different. If you watch the video, you’ll see that these shapes look quite organic. We did over 20 experiments with large robot swarms, each one taking about 3 hours.

Because the rules are so simple, and only rely on local information, we get adaptability and robustness for free.

Adaptability
First, as the shape grows, the Turing spots move, showing that the patterning adapts to the shape of the swarm, and that the shape further adapts to the patterning. Second, we can easily change the starting configuration of the swarm (smaller number of robots, or a ‘rectangular’ starting conditions) and the shape still forms.

Robustness
Chopping off a protrusion, causes the robots to regrow it, or to reallocate robots to other protrusions in the swarm. Splitting the swarm causes it to self-heal.

Potential for real world applications
While inspiration was taken from nature to grow the swarm shapes, the goal is ultimately to make large robot swarms for real-world applications. Imagine hundreds or thousands of tiny biodegradable robots growing shapes to explore a disaster environment after an earthquake or fire, or sculpting themselves into a dynamic 3D structure such as a temporary bridge that could automatically adjust its size and shape to fit any building or terrain. There is still a long way to go however, before we see such swarms outside the laboratory.

Team
James Sharpe (EMBL Barcelona) led the Swarm-Organ project, which was initiated at the Centre for Genomic Regulation (CRG) when Sharpe was a group leader there. Sabine Hauert (Bristol Robotics Laboratory and University of Bristol) was the key senior collaborator. Other collaborators were Fredrik Jansson (currently employed at Centrum Wiskunde & Informatica – CWI) and Jaap Kaandorp (University of Amsterdam – UvA).


Paper

You can read more in the paper Slavkov, I., Zapata D. C. et al., Science Robotics (2018).

Funding
The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7) under grant agreement n° 601062, and the EPSRC Centre for Doctoral Training in Future Autonomous and Robotic Systems (FARSCOPE) at the Bristol Robotics Laboratory.




Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :



Robot Talk Episode 102 – Isabella Fiorello

  13 Dec 2024
In the latest episode of the Robot Talk podcast, Claire chatted to Isabella Fiorello from the University of Freiburg about bioinspired living materials for soft robotics.

Robot Talk Episode 101 – Christos Bergeles

  06 Dec 2024
In the latest episode of the Robot Talk podcast, Claire chatted to Christos Bergeles from King's College London about micro-surgical robots to deliver therapies deep inside the body.

Robot Talk Episode 100 – Mini Rai

  29 Nov 2024
In the latest episode of the Robot Talk podcast, Claire chatted to Mini Rai from Orbit Rise about orbital and planetary robots.

Robot Talk Episode 99 – Joe Wolfel

  22 Nov 2024
In the latest episode of the Robot Talk podcast, Claire chatted to Joe Wolfel from Terradepth about autonomous submersible robots for collecting ocean data.

Robot Talk Episode 98 – Gabriella Pizzuto

  15 Nov 2024
In the latest episode of the Robot Talk podcast, Claire chatted to Gabriella Pizzuto from the University of Liverpool about intelligent robotic manipulators for laboratory automation.

Online hands-on science communication training – sign up here!

  13 Nov 2024
Find out how to communicate about your work with experts from Robohub, AIhub, and IEEE Spectrum.

Robot Talk Episode 97 – Pratap Tokekar

  08 Nov 2024
In the latest episode of the Robot Talk podcast, Claire chatted to Pratap Tokekar from the University of Maryland about how teams of robots with different capabilities can work together.

Robot Talk Episode 96 – Maria Elena Giannaccini

  01 Nov 2024
In the latest episode of the Robot Talk podcast, Claire chatted to Maria Elena Giannaccini from the University of Aberdeen about soft and bioinspired robotics for healthcare and beyond.





Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association