Robohub.org
 

Sven Koenig: Progress on Multi-Robot Path Finding | CMU RI Seminar


by
10 September 2017



share this:

Link to video on YouTube

Abstract: “Teams of robots often have to assign target locations among themselves and then plan collision-free paths to their target locations. Examples include autonomous aircraft towing vehicles and automated warehouse systems. For example, in the near future, autonomous aircraft towing vehicles might tow aircraft all the way from the runways to their gates (and vice versa), thereby reducing pollution, energy consumption, congestion and human workload. Today, hundreds of robots already navigate autonomously in Amazon fulfillment centers to move inventory pods all the way from their storage locations to the packing stations. Path planning for these robots can be NP-hard, yet one must find high-quality collision-free paths for them in real-time. The shorter these paths are, the fewer robots are needed and the cheaper it is to open new fulfillment centers. In this talk, I describe several variants of the multi-robot path-planning problem, their complexities and algorithms for solving them. I also present a hierarchical planning architecture that combines ideas from artificial intelligence and robotics. It makes use of a simple temporal network to post-process the output of a multi-robot path-finding algorithm in polynomial time to create a plan-execution schedule that take the maximum translational and rotational velocities of non-holonomic robots into account, provides a guaranteed safety distance between them, and exploits slack to absorb imperfect plan executions and avoid time-intensive re-planning in many cases. This research is joint research with N. Ayanian, T. Cai, L. Cohen, W. Hoenig, S. Kumar, H. Ma, G. Sharon, C. Tovey, T. Uras, H. Xu, S. Young, D. Zhang, and other colleagues and students.”




John Payne





Related posts :



A flexible lens controlled by light-activated artificial muscles promises to let soft machines see

  30 Oct 2025
Researchers have designed an adaptive lens made of soft, light-responsive, tissue-like materials.

Social media round-up from #IROS2025

  27 Oct 2025
Take a look at what participants got up to at the IEEE/RSJ International Conference on Intelligent Robots and Systems.

Using generative AI to diversify virtual training grounds for robots

  24 Oct 2025
New tool from MIT CSAIL creates realistic virtual kitchens and living rooms where simulated robots can interact with models of real-world objects, scaling up training data for robot foundation models.

Robot Talk Episode 130 – Robots learning from humans, with Chad Jenkins

  24 Oct 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Chad Jenkins from University of Michigan about how robots can learn from people and assist us in our daily lives.

Robot Talk at the Smart City Robotics Competition

  22 Oct 2025
In a special bonus episode of the podcast, Claire chatted to competitors, exhibitors, and attendees at the Smart City Robotics Competition in Milton Keynes.

Robot Talk Episode 129 – Automating museum experiments, with Yuen Ting Chan

  17 Oct 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Yuen Ting Chan from Natural History Museum about using robots to automate molecular biology experiments.

What’s coming up at #IROS2025?

  15 Oct 2025
Find out what the International Conference on Intelligent Robots and Systems has in store.

From sea to space, this robot is on a roll

  13 Oct 2025
Graduate students in the aptly named "RAD Lab" are working to improve RoboBall, the robot in an airbag.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence