Robohub.org
 

Ingredients for autonomous construction


by
28 May 2012



share this:

Most research in robotics focuses on a specific problem: building better hardware, implementing new algorithms, or demonstrating a new task. Combining all these state-of-the-art ingredients into a single system is the key to making autonomous robots capable of performing useful work in realistic environments. With this in mind, Stéphane Magnenat walks us through all the steps needed to perform autonomous construction using the marXbot in the video below. To make the task challenging, the building blocks from which robots build towers are distributed throughout the environment, which is riddled with ditches that can only be overcome by using these same building blocks as bridges. Because there are few building blocks, the robot has to figure out how to move the blocks in an near-to-optimal way so that it can navigate the environment while still building the tower. Furthermore, the robot does not have any information about its environment beforehand and can only use limited computational resources, as is often the case in realistic robot scenarios.

Solving this challenge requires an integrated system architecture (see figure below) that leverages modern algorithms and representations. The architecture is implemented using ASEBA, which is an open-source control architecture for microcontrollers. The low-level implements reactive behaviors such as avoiding obstacles and ditches or grasping objects. The high-level instead takes care of mapping the environment (using a version of FastSLAM), path-planning and reasoning.

The authors hope that such an integrated approach could help shed light on the capabilities required for intelligent physical interaction with the real world.




Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :



Robot Talk Episode 132 – Collaborating with industrial robots, with Anthony Jules

  07 Nov 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Anthony Jules from Robust.AI about their autonomous warehouse robots that work alongside humans.

Teaching robots to map large environments

  05 Nov 2025
A new approach could help a search-and-rescue robot navigate an unpredictable environment by rapidly generating an accurate map of its surroundings.

Robot Talk Episode 131 – Empowering game-changing robotics research, with Edith-Clare Hall

  31 Oct 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Edith-Clare Hall from the Advanced Research and Invention Agency about accelerating scientific and technological breakthroughs.

A flexible lens controlled by light-activated artificial muscles promises to let soft machines see

  30 Oct 2025
Researchers have designed an adaptive lens made of soft, light-responsive, tissue-like materials.

Social media round-up from #IROS2025

  27 Oct 2025
Take a look at what participants got up to at the IEEE/RSJ International Conference on Intelligent Robots and Systems.

Using generative AI to diversify virtual training grounds for robots

  24 Oct 2025
New tool from MIT CSAIL creates realistic virtual kitchens and living rooms where simulated robots can interact with models of real-world objects, scaling up training data for robot foundation models.

Robot Talk Episode 130 – Robots learning from humans, with Chad Jenkins

  24 Oct 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Chad Jenkins from University of Michigan about how robots can learn from people and assist us in our daily lives.

Robot Talk at the Smart City Robotics Competition

  22 Oct 2025
In a special bonus episode of the podcast, Claire chatted to competitors, exhibitors, and attendees at the Smart City Robotics Competition in Milton Keynes.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence