Robohub.org
 

Learning acrobatic maneuvers for quadrocopters


by
17 April 2012



share this:

Have you ever seen those videos of quadrocopters performing acrobatic maneuvers?

The latest paper on the Autonomous Robots website presents a simple method to make your robot achieve adaptive fast open-loop maneuvers, whether it’s performing multiple flips or fast translation motions. The method is thought to be straightforward to implement and understand, and general enough that it could be applied to problems outside of aerial acrobatics.

Before the experiment, an engineer with knowledge of the problem defines a maneuver as an initial state, a desired final state, and a parameterized control function responsible for producing the maneuver. A model of the robot motion is used to initialize the parameters of this control function. Because models are never perfect, the parameters then need to be refined during experiments. The error between the robot’s desired state and its achieved state after each maneuver is used to iteratively correct parameter values. More details can be found in the figure below or in the paper.

Method to achieve adaptive fast open-loop maneuver. p represents the parameters to be adapted, C is a first-order correction matrix, γ is a correction step size, and e is a vector of error measurements. (1) The user defines a motion in terms of initial and desired final states and a parameterized input function. (2) A first-principles continuous-time model is used to find nominal parameters p0 and C. (3) The motion is performed on the physical vehicle, (4) the error is measured and (5) a correction is applied to the parameters. The process is then repeated.

Experiments were performed in the ETH Flying Machine Arena which is equipped with an 8-camera motion capture system providing robot position and rotation measurements used for parametric learning.




Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :



Robot Talk Episode 131 – Empowering game-changing robotics research, with Edith-Clare Hall

  31 Oct 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Edith-Clare Hall from the Advanced Research and Invention Agency about accelerating scientific and technological breakthroughs.

A flexible lens controlled by light-activated artificial muscles promises to let soft machines see

  30 Oct 2025
Researchers have designed an adaptive lens made of soft, light-responsive, tissue-like materials.

Social media round-up from #IROS2025

  27 Oct 2025
Take a look at what participants got up to at the IEEE/RSJ International Conference on Intelligent Robots and Systems.

Using generative AI to diversify virtual training grounds for robots

  24 Oct 2025
New tool from MIT CSAIL creates realistic virtual kitchens and living rooms where simulated robots can interact with models of real-world objects, scaling up training data for robot foundation models.

Robot Talk Episode 130 – Robots learning from humans, with Chad Jenkins

  24 Oct 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Chad Jenkins from University of Michigan about how robots can learn from people and assist us in our daily lives.

Robot Talk at the Smart City Robotics Competition

  22 Oct 2025
In a special bonus episode of the podcast, Claire chatted to competitors, exhibitors, and attendees at the Smart City Robotics Competition in Milton Keynes.

Robot Talk Episode 129 – Automating museum experiments, with Yuen Ting Chan

  17 Oct 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Yuen Ting Chan from Natural History Museum about using robots to automate molecular biology experiments.

What’s coming up at #IROS2025?

  15 Oct 2025
Find out what the International Conference on Intelligent Robots and Systems has in store.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence