Robohub.org
 

Any-shape robot formations


by
02 June 2011



share this:

Groups of robots that move in precise formations could be used to sense an environment from multiple points of view or navigate a warehouse in a compact manner. The challenge is to build formations in a distributed manner, meaning there is no leader telling every robot where to go. Instead robots must react to neighboring robots within a limited sensing range.

To solve this problem, Sabattini et al. propose an elegant algorithm that guarantees robots will move in formations of any desirable shape without bumping into each other. Let’s start with a simple scenario where N robots are asked to form a polygon with N edges of length L. Such a polygon can hold in a circle of radius R as shown in the figure below. Robots reach that configuration by being repulsed from the center of the circle until they are at a distance R, along the circle. Combine that with a rule to make each robot repulse from neighbors that are closer than a distance L and you get a polygon. However, using these two rules alone, robots would form polygons oriented in any direction. To make sure the polygon points in the right direction, simply attract one of the robots to a specific position (a* in the figure). All the other robots will then adapt to this robot to form a polygon oriented in the desired manner.

So how do you go from making a polygon to making any arbitrary shape? The trick is to cleverly change the coordinate system of the robots so that they think they are forming a polygon, when in fact they are forming the desired shape. This can be seen in the figure below which shows simulated robots in a real coordinate system, and in the transformed coordinate system.

Robot trajectories simulated with Matlab: black dots are the starting positions, red stars are the final positions. Trajectories are plotted with respect to the real reference frame (left) and the transformed one (right).

Experiment were conducted in matlab, Player/Stage and in reality using three Roomba vacuum cleaners. The Roombas were equipped with a gumstix computer and wireless hardware. During formation, robots would calculate their position using odometry and transmit their location to neighboring robots using WiFi. Results show that the proposed algorithm is successful in creating the desired formations, regardless of the original positions of the robots.

In the future, authors hope to optimize robot trajectories, avoid obstacles in the environment and control the heading of the individual robots.




Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :



Robot Talk Episode 126 – Why are we building humanoid robots?

  20 Jun 2025
In this special live recording at Imperial College London, Claire chatted to Ben Russell, Maryam Banitalebi Dehkordi, and Petar Kormushev about humanoid robotics.

Gearing up for RoboCupJunior: Interview with Ana Patrícia Magalhães

and   18 Jun 2025
We hear from the organiser of RoboCupJunior 2025 and find out how the preparations are going for the event.

Robot Talk Episode 125 – Chatting with robots, with Gabriel Skantze

  13 Jun 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Gabriel Skantze from KTH Royal Institute of Technology about having natural face-to-face conversations with robots.

Preparing for kick-off at RoboCup2025: an interview with General Chair Marco Simões

and   12 Jun 2025
We caught up with Marco to find out what exciting events are in store at this year's RoboCup.

Interview with Amar Halilovic: Explainable AI for robotics

  10 Jun 2025
Find out about Amar's research investigating the generation of explanations for robot actions.

Robot Talk Episode 124 – Robots in the performing arts, with Amy LaViers

  06 Jun 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Amy LaViers from the Robotics, Automation, and Dance Lab about the creative relationship between humans and machines.

Robot Talk Episode 123 – Standardising robot programming, with Nick Thompson

  30 May 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Nick Thompson from BOW about software that makes robots easier to program.

Congratulations to the #AAMAS2025 best paper, best demo, and distinguished dissertation award winners

  29 May 2025
Find out who won the awards presented at the International Conference on Autonomous Agents and Multiagent Systems last week.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2025.05 - Association for the Understanding of Artificial Intelligence


 












©2025.05 - Association for the Understanding of Artificial Intelligence