Robohub.org
 

Integrating path planning and robot control


by
07 March 2011



share this:

There is often a conflict between planning the path a robot should take to achieve a desired task (high-level control) and the motion control needed for the robot to follow this path (low-level control). The problem is that if you decouple the path planning from the robot control, you might end up with paths that are impossible for the robot to follow because of physical constraints. Fully coupling the high-level and low-level control would solve this problem, although such intricate controllers are typically difficult to design.

To solve these shortcomings, Conner et al. propose a hybrid control strategy that combines low-level and high-level control in a smart way. As a test case, they consider a scenario where a robot needs to reach a goal while avoiding obstacles. The robot has a non-trivial body shape and is nonholonomic, meaning that it can not turn on the spot. The approach they developed is shown in the figure below. Local control policies, showed by fennel-shapped sets with vector field arrows, are responsible for making the robot drive towards a local goal. These policies respect the low-level dynamics and kinematics of the robot. A set of control policies can then be followed sequentially to reach a desired high-level behavior. To find the best path, an abstract tree representing the transitions between control policies is used.

Experiments were done with a LAGR robot in a fully known environment and with visual localization using landmarks. Results show that the method is successful in safely guiding the nonholonomic robot to its goal in an obstacle prone environment and that disturbances do not require the robot to replan its course.




Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :



Robot Talk Episode 120 – Evolving robots to explore other planets, with Emma Hart

  09 May 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Emma Hart from Edinburgh Napier University about algorithms that 'evolve' better robot designs and control systems.

Robot Talk Episode 119 – Robotics for small manufacturers, with Will Kinghorn

  02 May 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Will Kinghorn from Made Smarter about how to increase adoption of new tech by small manufacturers.

Multi-agent path finding in continuous environments

  01 May 2025
How can a group of agents minimise their journey length whilst avoiding collisions?

Interview with Yuki Mitsufuji: Improving AI image generation

  29 Apr 2025
Find out about two pieces of research tackling different aspects of image generation.

Robot Talk Episode 118 – Soft robotics and electronic skin, with Miranda Lowther

  25 Apr 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Miranda Lowther from the University of Bristol about soft, sensitive electronic skin for prosthetic limbs.

Interview with Amina Mević: Machine learning applied to semiconductor manufacturing

  17 Apr 2025
Find out how Amina is using machine learning to develop an explainable multi-output virtual metrology system.

Robot Talk Episode 117 – Robots in orbit, with Jeremy Hadall

  11 Apr 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Jeremy Hadall from the Satellite Applications Catapult about robotic systems for in-orbit servicing, assembly, and manufacturing.

Robot Talk Episode 116 – Evolved behaviour for robot teams, with Tanja Kaiser

  04 Apr 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Tanja Katharina Kaiser from the University of Technology Nuremberg about how applying evolutionary principles can help robot teams make better decisions.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2025.05 - Association for the Understanding of Artificial Intelligence


 












©2025.05 - Association for the Understanding of Artificial Intelligence