Robohub.org
 

Real-time behavior-based control


by
22 February 2011



share this:

Using behavior-based controllers, robots are theoretically able to rapidly react to their environment. This is typically done by having several behaviors, that map sensory input to actuator commands, run concurrently on the robot. A hierarchy then determines which behavior has access to the actuators.

If your robot needs to navigate a room, you might implement a trajectory planning behavior and a simple obstacle avoidance behavior with high priority to avoid any accidents. If the robot only has one processor, then both behaviors might run in “parallel” as threads. However, if one of your behaviors entails heavy processing, it might hog all the CPU power and impeach the high-priority behaviors from being executed at the right time. In the example above, this might lead to the robot crashing into obstacles. One solution consists in increasing the processing power although this might be incompatible with the size and cost constraints of your robot.

As an alternative, Woolley et al. propose a “Real-Time Unified Behavior Framework” to cope with real-time constraints in behavior-based systems. The framework allows time-critical reactive behaviors to be run at a desired time and in a periodic fashion. Instead, demanding processing tasks that are not critical to the safe operation of the robot are executed whenever possible. This is done by moving time-critical behaviors out of the Linux environment (which can not execute real-time tasks) and into an environment managed by a real-time scheduler.

Real-time tasks bypass Linux and run on the real-time scheduler.

Experiments were conducted on a Pioneer P2-AT8 robot equipped with 16 sonars, odometry, a SICK LMS200 laser scanner and a 1294 camera. The robot was programed to follow an orange cone through a hallway while avoiding obstacles. Results show that the robot was able to meet hard real-time constraints while running computationally demanding processes including FastSLAM.




Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :



Robot Talk Episode 103 – Keenan Wyrobek

  20 Dec 2024
In the latest episode of the Robot Talk podcast, Claire chatted to Keenan Wyrobek from Zipline about drones for delivering life-saving medicine to remote locations.

Robot Talk Episode 102 – Isabella Fiorello

  13 Dec 2024
In the latest episode of the Robot Talk podcast, Claire chatted to Isabella Fiorello from the University of Freiburg about bioinspired living materials for soft robotics.

Robot Talk Episode 101 – Christos Bergeles

  06 Dec 2024
In the latest episode of the Robot Talk podcast, Claire chatted to Christos Bergeles from King's College London about micro-surgical robots to deliver therapies deep inside the body.

Robot Talk Episode 100 – Mini Rai

  29 Nov 2024
In the latest episode of the Robot Talk podcast, Claire chatted to Mini Rai from Orbit Rise about orbital and planetary robots.

Robot Talk Episode 99 – Joe Wolfel

  22 Nov 2024
In the latest episode of the Robot Talk podcast, Claire chatted to Joe Wolfel from Terradepth about autonomous submersible robots for collecting ocean data.

Robot Talk Episode 98 – Gabriella Pizzuto

  15 Nov 2024
In the latest episode of the Robot Talk podcast, Claire chatted to Gabriella Pizzuto from the University of Liverpool about intelligent robotic manipulators for laboratory automation.

Online hands-on science communication training – sign up here!

  13 Nov 2024
Find out how to communicate about your work with experts from Robohub, AIhub, and IEEE Spectrum.

Robot Talk Episode 97 – Pratap Tokekar

  08 Nov 2024
In the latest episode of the Robot Talk podcast, Claire chatted to Pratap Tokekar from the University of Maryland about how teams of robots with different capabilities can work together.





Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association