Robohub.org
 

Real-time behavior-based control


by
22 February 2011



share this:

Using behavior-based controllers, robots are theoretically able to rapidly react to their environment. This is typically done by having several behaviors, that map sensory input to actuator commands, run concurrently on the robot. A hierarchy then determines which behavior has access to the actuators.

If your robot needs to navigate a room, you might implement a trajectory planning behavior and a simple obstacle avoidance behavior with high priority to avoid any accidents. If the robot only has one processor, then both behaviors might run in “parallel” as threads. However, if one of your behaviors entails heavy processing, it might hog all the CPU power and impeach the high-priority behaviors from being executed at the right time. In the example above, this might lead to the robot crashing into obstacles. One solution consists in increasing the processing power although this might be incompatible with the size and cost constraints of your robot.

As an alternative, Woolley et al. propose a “Real-Time Unified Behavior Framework” to cope with real-time constraints in behavior-based systems. The framework allows time-critical reactive behaviors to be run at a desired time and in a periodic fashion. Instead, demanding processing tasks that are not critical to the safe operation of the robot are executed whenever possible. This is done by moving time-critical behaviors out of the Linux environment (which can not execute real-time tasks) and into an environment managed by a real-time scheduler.

Real-time tasks bypass Linux and run on the real-time scheduler.

Experiments were conducted on a Pioneer P2-AT8 robot equipped with 16 sonars, odometry, a SICK LMS200 laser scanner and a 1294 camera. The robot was programed to follow an orange cone through a hallway while avoiding obstacles. Results show that the robot was able to meet hard real-time constraints while running computationally demanding processes including FastSLAM.




Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :



Robot Talk Episode 131 – Empowering game-changing robotics research, with Edith-Clare Hall

  31 Oct 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Edith-Clare Hall from the Advanced Research and Invention Agency about accelerating scientific and technological breakthroughs.

A flexible lens controlled by light-activated artificial muscles promises to let soft machines see

  30 Oct 2025
Researchers have designed an adaptive lens made of soft, light-responsive, tissue-like materials.

Social media round-up from #IROS2025

  27 Oct 2025
Take a look at what participants got up to at the IEEE/RSJ International Conference on Intelligent Robots and Systems.

Using generative AI to diversify virtual training grounds for robots

  24 Oct 2025
New tool from MIT CSAIL creates realistic virtual kitchens and living rooms where simulated robots can interact with models of real-world objects, scaling up training data for robot foundation models.

Robot Talk Episode 130 – Robots learning from humans, with Chad Jenkins

  24 Oct 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Chad Jenkins from University of Michigan about how robots can learn from people and assist us in our daily lives.

Robot Talk at the Smart City Robotics Competition

  22 Oct 2025
In a special bonus episode of the podcast, Claire chatted to competitors, exhibitors, and attendees at the Smart City Robotics Competition in Milton Keynes.

Robot Talk Episode 129 – Automating museum experiments, with Yuen Ting Chan

  17 Oct 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Yuen Ting Chan from Natural History Museum about using robots to automate molecular biology experiments.

What’s coming up at #IROS2025?

  15 Oct 2025
Find out what the International Conference on Intelligent Robots and Systems has in store.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence