Robohub.org
 

Abandoned railway roadbeds

by
26 November 2011



share this:

In the Emma Marris video, linked from a previous post, there appears to be an abandoned railway roadbed in the background. Such spaces almost automatically return to nature, left to themselves for a few years, but if the rails haven’t been removed they are ideal testbeds for robotic equipment designed to guide, elaborate, and accelerate that process.

 

Besides the usual gardening techniques, such machines could move some soil and gravel from the rail-bed around to create microclimates with various shading/exposure, slope, drainage, water collection and/or even distribution across a flat bottom. They could weave vines together to create sheltered spaces for small birds, train high branches of trees from both sides of the rail-bed to arch overhead, creating deep shade by tying them together, position art objects intended to provide habitat for mice, birds, and bats and anchor them with soil and gravel. These machines could also assist other species in the creation of their preferred shelters, for instance by digging a bit of a hollow at the bases of trees with roots that spread abruptly just under the surface, or providing platforms in the forks of tree branches, just big enough to support proper nests, constructed of sticks and twine.

 

Emphasis on avian habitat would mean faster accumulation of a diversity of plant species, because birds frequently pass the seeds of berries they’ve eaten through, undigested. And, because the seeds of berries preferred by birds predominate, the result is a positive feedback loop.

 

Such machines could also provide damage-free access to the resulting space through inclusion of observation decks on top of the robotic rail platforms. If several such machines are to be spread along a single rail-bed, they should be designed so that they are able to approach each other closely enough that their observation decks come together, allowing riders to step across from one to another.



tags: , , ,


John Payne





Related posts :



Robo-Insight #5

In this fifth edition, we are excited to feature robot progress in human-robot interaction, agile movement, enhanced training methods, soft robotics, brain surgery, medical navigation, and ecological research. 
25 September 2023, by

Soft robotic tool provides new ‘eyes’ in endovascular surgery

The magnetic device can help visualise and navigate complex and narrow spaces.

‘Brainless’ robot can navigate complex obstacles

Researchers who created a soft robot that could navigate simple mazes without human or computer direction have now built on that work, creating a “brainless” soft robot that can navigate more complex and dynamic environments.
21 September 2023, by

Battery-free origami microfliers from UW researchers offer a new bio-inspired future of flying machines

Researchers at the University of Washington present battery-free microfliers that can change shape in mid-air to vary their dispersal distance.

Virtual-reality tech is fast becoming more real

Touch sensations are improving to help sectors like healthcare and manufacturing, while other advances are being driven by the gaming industry.
16 September 2023, by

High-tech microscope with ML software for detecting malaria in returning travellers

Method not as accurate as human experts, but shows promise.
14 September 2023, by and





©2021 - ROBOTS Association


 












©2021 - ROBOTS Association