Robohub.org
 

Adaptive bipedal walking on slopes


by
06 September 2010



share this:

Imagine walking on a flat surface with your eyes blinded. If the slope below your feet changes, you’ll most likely change your posture to keep moving. To explain this, an idea from the 1950s says that we can predict the sensation that will be produced by a motor command sent by our central nervous system. We can therefore tell apart sensations that are due to our own motion and sensations due to external stimuli. When the expected sensation doesn’t match the sensory input, we change our behavior to compensate.

In work by Schröder-Schetelig et al., a robotic walker uses this idea to stay on its two feet. More precisely, the robot uses a neural network (which is a type of controller) to send commands to hip-joint and knee-joint motors such that the robot is able to walk on flat terrain. These motor commands are then copied (efference copy) and fed to a second neural network that captures the internal model of the robot. This model predicts the acceleration the robot should feel given its motor command and current state. If the acceleration is larger than expected, the robot is probably going downhill and should lean back to slow down. Likewise, if the acceleration is lower, the robot is going uphill and should lean forward. Leaning backward and forward is performed by moving a mass that represents the upper body of the robot and is controlled by a third neural network that takes as an input the robot’s predicted acceleration and the measured acceleration given by an accelerometer.

Experiments shown in the video below were conducted on Runbot, a 23cm bipedal robot that is physically constrained to a circular path of 1m radius and can not perform sideway movements. Results show the robot successfully climbing a changing slope.

In the future, Schröder-Schetelig et al. hope to refine the internal model of Runbot, make it climb even steeper slopes and adapt to new and unforeseen environments.




Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :



Robot Talk Episode 123 – Standardising robot programming, with Nick Thompson

  30 May 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Nick Thompson from BOW about software that makes robots easier to program.

Congratulations to the #AAMAS2025 best paper, best demo, and distinguished dissertation award winners

  29 May 2025
Find out who won the awards presented at the International Conference on Autonomous Agents and Multiagent Systems last week.

Congratulations to the #ICRA2025 best paper award winners

  27 May 2025
The winners and finalists in the different categories have been announced.

#ICRA2025 social media round-up

  23 May 2025
Find out what the participants got up to at the International Conference on Robotics & Automation.

Robot Talk Episode 122 – Bio-inspired flying robots, with Jane Pauline Ramos Ramirez

  23 May 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Jane Pauline Ramos Ramirez from Delft University of Technology about drones that can move on land and in the air.

Robot Talk Episode 121 – Adaptable robots for the home, with Lerrel Pinto

  16 May 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Lerrel Pinto from New York University about using machine learning to train robots to adapt to new environments.

What’s coming up at #ICRA2025?

  16 May 2025
Find out what's in store at the IEEE International Conference on Robotics & Automation, which will take place from 19-23 May.

Robot see, robot do: System learns after watching how-tos

  14 May 2025
Researchers have developed a new robotic framework that allows robots to learn tasks by watching a how-to video



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2025.05 - Association for the Understanding of Artificial Intelligence


 












©2025.05 - Association for the Understanding of Artificial Intelligence