Robohub.org
 

Adaptive bipedal walking on slopes


by
06 September 2010



share this:

Imagine walking on a flat surface with your eyes blinded. If the slope below your feet changes, you’ll most likely change your posture to keep moving. To explain this, an idea from the 1950s says that we can predict the sensation that will be produced by a motor command sent by our central nervous system. We can therefore tell apart sensations that are due to our own motion and sensations due to external stimuli. When the expected sensation doesn’t match the sensory input, we change our behavior to compensate.

In work by Schröder-Schetelig et al., a robotic walker uses this idea to stay on its two feet. More precisely, the robot uses a neural network (which is a type of controller) to send commands to hip-joint and knee-joint motors such that the robot is able to walk on flat terrain. These motor commands are then copied (efference copy) and fed to a second neural network that captures the internal model of the robot. This model predicts the acceleration the robot should feel given its motor command and current state. If the acceleration is larger than expected, the robot is probably going downhill and should lean back to slow down. Likewise, if the acceleration is lower, the robot is going uphill and should lean forward. Leaning backward and forward is performed by moving a mass that represents the upper body of the robot and is controlled by a third neural network that takes as an input the robot’s predicted acceleration and the measured acceleration given by an accelerometer.

Experiments shown in the video below were conducted on Runbot, a 23cm bipedal robot that is physically constrained to a circular path of 1m radius and can not perform sideway movements. Results show the robot successfully climbing a changing slope.

In the future, Schröder-Schetelig et al. hope to refine the internal model of Runbot, make it climb even steeper slopes and adapt to new and unforeseen environments.




Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :



Robot Talk Episode 103 – Keenan Wyrobek

  20 Dec 2024
In the latest episode of the Robot Talk podcast, Claire chatted to Keenan Wyrobek from Zipline about drones for delivering life-saving medicine to remote locations.

Robot Talk Episode 102 – Isabella Fiorello

  13 Dec 2024
In the latest episode of the Robot Talk podcast, Claire chatted to Isabella Fiorello from the University of Freiburg about bioinspired living materials for soft robotics.

Robot Talk Episode 101 – Christos Bergeles

  06 Dec 2024
In the latest episode of the Robot Talk podcast, Claire chatted to Christos Bergeles from King's College London about micro-surgical robots to deliver therapies deep inside the body.

Robot Talk Episode 100 – Mini Rai

  29 Nov 2024
In the latest episode of the Robot Talk podcast, Claire chatted to Mini Rai from Orbit Rise about orbital and planetary robots.

Robot Talk Episode 99 – Joe Wolfel

  22 Nov 2024
In the latest episode of the Robot Talk podcast, Claire chatted to Joe Wolfel from Terradepth about autonomous submersible robots for collecting ocean data.

Robot Talk Episode 98 – Gabriella Pizzuto

  15 Nov 2024
In the latest episode of the Robot Talk podcast, Claire chatted to Gabriella Pizzuto from the University of Liverpool about intelligent robotic manipulators for laboratory automation.

Online hands-on science communication training – sign up here!

  13 Nov 2024
Find out how to communicate about your work with experts from Robohub, AIhub, and IEEE Spectrum.

Robot Talk Episode 97 – Pratap Tokekar

  08 Nov 2024
In the latest episode of the Robot Talk podcast, Claire chatted to Pratap Tokekar from the University of Maryland about how teams of robots with different capabilities can work together.





Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association