Robohub.org
 

Adaptive bipedal walking on slopes

by
06 September 2010



share this:

Imagine walking on a flat surface with your eyes blinded. If the slope below your feet changes, you’ll most likely change your posture to keep moving. To explain this, an idea from the 1950s says that we can predict the sensation that will be produced by a motor command sent by our central nervous system. We can therefore tell apart sensations that are due to our own motion and sensations due to external stimuli. When the expected sensation doesn’t match the sensory input, we change our behavior to compensate.

In work by Schröder-Schetelig et al., a robotic walker uses this idea to stay on its two feet. More precisely, the robot uses a neural network (which is a type of controller) to send commands to hip-joint and knee-joint motors such that the robot is able to walk on flat terrain. These motor commands are then copied (efference copy) and fed to a second neural network that captures the internal model of the robot. This model predicts the acceleration the robot should feel given its motor command and current state. If the acceleration is larger than expected, the robot is probably going downhill and should lean back to slow down. Likewise, if the acceleration is lower, the robot is going uphill and should lean forward. Leaning backward and forward is performed by moving a mass that represents the upper body of the robot and is controlled by a third neural network that takes as an input the robot’s predicted acceleration and the measured acceleration given by an accelerometer.

Experiments shown in the video below were conducted on Runbot, a 23cm bipedal robot that is physically constrained to a circular path of 1m radius and can not perform sideway movements. Results show the robot successfully climbing a changing slope.

In the future, Schröder-Schetelig et al. hope to refine the internal model of Runbot, make it climb even steeper slopes and adapt to new and unforeseen environments.




Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :



Robot Talk Episode 92 – Gisela Reyes-Cruz

In the latest episode of the Robot Talk podcast, Claire chatted to Gisela Reyes-Cruz from the University of Nottingham about how humans interact with, trust and accept robots.
04 October 2024, by

Robot Talk Episode 91 – John Leonard

In the latest episode of the Robot Talk podcast, Claire chatted to John Leonard from Massachusetts Institute of Technology about autonomous navigation for underwater vehicles and self-driving cars. 
27 September 2024, by

Interview with Jerry Tan: Service robot development for education

We find out about the Jupiter2 platform and how it can be used in educational settings.
18 September 2024, by

#RoboCup2024 – daily digest: 21 July

In the last of our digests, we report on the closing day of competitions in Eindhoven.
21 July 2024, by and

#RoboCup2024 – daily digest: 20 July

In the second of our daily round-ups, we bring you a taste of the action from Eindhoven.
20 July 2024, by and

#RoboCup2024 – daily digest: 19 July

Welcome to the first of our daily round-ups from RoboCup2024 in Eindhoven.
19 July 2024, by and





Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association