Automated vehicle crashes

29 May 2015

share this:
Photo source: Wikipedia [Flckr user jurvetson (Steve Jurvetson) CC BY-SA 2.0]

Photo source: Wikipedia [Flckr user jurvetson (Steve Jurvetson) CC BY-SA 2.0]

Earlier this month, the Associated Press reported on several past crashes involving automated vehicles. (Per SAE Standard J3016, I use the term “automated vehicle” instead of “autonomous vehicle” or “self-driving car” or “driverless car.”) A few thoughts.

1) As I wrote in 2012, we would need more information — about the crashes themselves, the conditions under which each company’s automated vehicles are tested, and the situations in which each company’s test drivers intervene — to provide statistical context for these incidents.

2) In some ways, the AP’s inquiry gave us a preview of how public and private actors might respond to future automated vehicle crashes that actually result in injury or death. It may be instructive to view the reactions ofGoogleDelphi, and the California DMV in this light.

3) Over the last few years, I have advised both developers and regulators of automated systems to put in place specific plans for responding, both publicly and privately, to the first high-profile incidents involving these systems. My sense, however, is that many organizations still have not created these “break-the-glass” or “break-glass” plans.

4) Earlier this semester, my impressive Law of the Newly Possible students did develop two thoughtful break-glass plans: one for the developers of automated driving systems and another for the regulators of these systems. Interestingly, although the private-sector group and the public-sector group each recognized the need to communicate with each other in the event of a crash, each also hesitated in reaching out to the other in the course of planning. In the real world, a broad range of stakeholders should be coordinating these plans sooner rather than later.

5) My book chapter on Regulation and the Risk of Inaction, also released this week, identifies eight public-sector strategies for managing risks related to automated driving. It can be freely downloaded here. A key point is that we must expect more of conventional drivers as well as automated vehicles. To paraphrase myself: I’m concerned about computer drivers, but I’m terrified about human drivers.

6) As always, please visit for additional materials.

tags: , ,

Bryant Walker Smith is an expert on the legal aspects of autonomous driving and a fellow at Stanford Law School.
Bryant Walker Smith is an expert on the legal aspects of autonomous driving and a fellow at Stanford Law School.

Related posts :

Flocks of assembler robots show potential for making larger structures

Researchers make progress toward groups of robots that could build almost anything, including buildings, vehicles, and even bigger robots.
25 November 2022, by

Holiday robot wishlist for/from Women in Robotics

Are you looking for a gift for the women in robotics in your life? Or the up and coming women in robotics in your family? Perhaps these suggestions from our not-for-profit Women in Robotics organization will inspire!
24 November 2022, by and

TRINITY, the European network for Agile Manufacturing

The Trinity project is the magnet that connects every segment of agile with everyone involved, creating a network that supports people, organisations, production and processes.
20 November 2022, by

Fighting tumours with magnetic bacteria

Researchers at ETH Zurich are planning to use magnetic bacteria to fight cancerous tumours. They have now found a way for these microorganisms to effectively cross blood vessel walls and subsequently colonise a tumour.
19 November 2022, by

Combating climate change with a soft robotics fish

We have fabricated a 3D printed, cable-actuated wave spring tail made from soft materials that can drive a small robot fish.
17 November 2022, by

#IROS2022 best paper awards

Here we bring you the papers that received an award this year at IROS in case you missed them.
14 November 2022, by

©2021 - ROBOTS Association


©2021 - ROBOTS Association