Robohub.org
 

Bipedal robot achieves Guinness World Record in 100 metres


by and
03 October 2022



share this:

bipedal robot running on trackCassie the robot sets 100-metre record, photo by Kegan Sims.

By Steve Lundeberg

Cassie the robot, invented at the Oregon State University College of Engineering and produced by OSU spinout company Agility Robotics, has established a Guinness World Record for the fastest 100 metres by a bipedal robot.

Cassie clocked the historic time of 24.73 seconds at OSU’s Whyte Track and Field Center, starting from a standing position and returning to that position after the sprint, with no falls.

The 100-metre record builds on earlier achievements by the robot, including traversing five kilometres in 2021 in just over 53 minutes. Cassie, the first bipedal robot to use machine learning to control a running gait on outdoor terrain, completed the 5K on Oregon State’s campus untethered and on a single battery charge.

Cassie was developed under the direction of Oregon State robotics professor Jonathan Hurst. The robot has knees that bend like an ostrich’s and operates with no cameras or external sensors, essentially as if blind.

Since Cassie’s introduction in 2017, in collaboration with artificial intelligence professor Alan Fern, OSU students have been exploring machine learning options in Oregon State’s Dynamic Robotics and AI Lab.

“We have been building the understanding to achieve this world record over the past several years, running a 5K and also going up and down stairs,” said graduate student Devin Crowley, who led the Guinness effort. “Machine learning approaches have long been used for pattern recognition, such as image recognition, but generating control behaviors for robots is new and different.”

The Dynamic Robotics and AI Lab melds physics with AI approaches more commonly used with data and simulation to generate novel results in robot control, Fern said. Students and researchers come from a range of backgrounds including mechanical engineering, robotics and computer science.

“Cassie has been a platform for pioneering research in robot learning for locomotion,” Crowley said. “Completing a 5K was about reliability and endurance, which left open the question of, how fast can Cassie run? That led the research team to shift its focus to speed.”

Cassie was trained for the equivalent of a full year in a simulation environment, compressed to a week through a computing technique known as parallelization – multiple processes and calculations happening at the same time, allowing Cassie to go through a range of training experiences simultaneously.

“Cassie can perform a spectrum of different gaits but as we specialized it for speed we began to wonder, which gaits are most efficient at each speed?” Crowley said. “This led to Cassie’s first optimized running gait and resulted in behavior that was strikingly similar to human biomechanics.”

The remaining challenge, a “deceptively difficult” one, was to get Cassie to reliably start from a free-standing position, run, and then return to the free-standing position without falling.

“Starting and stopping in a standing position are more difficult than the running part, similar to how taking off and landing are harder than actually flying a plane,” Fern said. “This 100-metre result was achieved by a deep collaboration between mechanical hardware design and advanced artificial intelligence for the control of that hardware.”

Hurst, chief technology officer at Agility Robotics and a robotics professor at Oregon State, said: “This may be the first bipedal robot to learn to run, but it won’t be the last. I believe control approaches like this are going to be a huge part of the future of robotics. The exciting part of this race is the potential. Using learned policies for robot control is a very new field, and this 100-metre dash is showing better performance than other control methods. I think progress is going to accelerate from here.”




Oregon State University

AIhub is a non-profit dedicated to connecting the AI community to the public by providing free, high-quality information in AI.
AIhub is a non-profit dedicated to connecting the AI community to the public by providing free, high-quality information in AI.





Related posts :



Robot Talk Episode 126 – Why are we building humanoid robots?

  20 Jun 2025
In this special live recording at Imperial College London, Claire chatted to Ben Russell, Maryam Banitalebi Dehkordi, and Petar Kormushev about humanoid robotics.

Gearing up for RoboCupJunior: Interview with Ana Patrícia Magalhães

and   18 Jun 2025
We hear from the organiser of RoboCupJunior 2025 and find out how the preparations are going for the event.

Robot Talk Episode 125 – Chatting with robots, with Gabriel Skantze

  13 Jun 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Gabriel Skantze from KTH Royal Institute of Technology about having natural face-to-face conversations with robots.

Preparing for kick-off at RoboCup2025: an interview with General Chair Marco Simões

and   12 Jun 2025
We caught up with Marco to find out what exciting events are in store at this year's RoboCup.

Interview with Amar Halilovic: Explainable AI for robotics

  10 Jun 2025
Find out about Amar's research investigating the generation of explanations for robot actions.

Robot Talk Episode 124 – Robots in the performing arts, with Amy LaViers

  06 Jun 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Amy LaViers from the Robotics, Automation, and Dance Lab about the creative relationship between humans and machines.

Robot Talk Episode 123 – Standardising robot programming, with Nick Thompson

  30 May 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Nick Thompson from BOW about software that makes robots easier to program.

Congratulations to the #AAMAS2025 best paper, best demo, and distinguished dissertation award winners

  29 May 2025
Find out who won the awards presented at the International Conference on Autonomous Agents and Multiagent Systems last week.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2025.05 - Association for the Understanding of Artificial Intelligence


 












©2025.05 - Association for the Understanding of Artificial Intelligence