Robohub.org
 

Building topological maps to get around

by
31 August 2011



share this:

Service robots entering our homes will need to map their environment and figure out their location as they move around. Previous articles discussed Self-Localization And Mapping (SLAM) approaches that give accurate measurements regarding the location of the robot and objects in the environment. Such so called “metric” approaches can be useful for robot tasks that require high accuracy, such as placing a cup in an exact location.

Instead, the “topological” approach represents the environment as places (nodes) and paths between places as edges. Robots can localize by finding the node where they are currently positioned. The advantage of this approach is that large amounts of data can be stored as nodes and edges and noisy sensors can be used to grossly map the environment. Furthermore, for human robot interactions it is sometimes more useful for the robot to know in what room it is (e.g. kitchen node) rather than a cartesian coordinate.

Following this idea, Choi et al. present a method for autonomous topological modeling and localization in home environments using only low-cost sonar sensors. Experiments were conducted using a Pioneer 3-DX differential drive robot (see picture below) equipped with 12 Murata MA40B8 sonar sensors in a 11.4 m × 8.7 m home environment of several rooms containing items of furniture.

As a first step, the robot was manually guided along an arbitrary path at an average speed of about 0.15 m/s while acquiring sensor data at a rate of 4 Hz. Based on the sonar data, the robot marks a grid map with regions that have obstacles and those that don’t. The grid map is then partitioned into several convex subregions that represent the nodes in the environment. The result is a topological map as can be seen below. As a second experiment, the robot is again guided through the environment and asked to identify its node location, even in situations where furniture has been moved around. Results show that the proposed method provides reliable modeling and localization using sparse and noisy sonar data.

Experimental results of the autonomous topological modeling process: autonomous subregion extractions (each subregion is a different color) and the corresponding topological models.

Although the proposed method was developed for sonar sensors, it can also be applied to any type of sensor that generates grid maps (e.g., laser range finders or stereo vision sensors).




Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :



Our future could be full of undying, self-repairing robots – here’s how

Could it be that future AI systems will need robotic “bodies” to interact with the world? If so, will nightmarish ideas like the self-repairing, shape-shifting T-1000 robot from the Terminator 2 movie come to fruition? And could a robot be created that could “live” forever?
01 February 2023, by

Sensing with purpose

Fadel Adib uses wireless technologies to sense the world in new ways, taking aim at sweeping problems such as food insecurity, climate change, and access to health care.
29 January 2023, by

Robot Talk Episode 34 – Interview with Sabine Hauert

In this week's episode of the Robot Talk podcast, host Claire Asher chatted to Dr Sabine Hauert from the University of Bristol all about swarm robotics, nanorobots, and environmental monitoring.
28 January 2023, by

Special drone collects environmental DNA from trees

Researchers at ETH Zurich and the Swiss Federal research institute WSL have developed a flying device that can land on tree branches to take samples. This opens up a new dimension for scientists previously reserved for biodiversity researchers.
27 January 2023, by

The robots of CES 2023

Robots were on the main expo floor at CES this year, and these weren’t just cool robots for marketing purposes. I’ve been tracking robots at CES for more than 10 years, watching the transition from robot toys to real robots.
25 January 2023, by





©2021 - ROBOTS Association


 












©2021 - ROBOTS Association