Robohub.org
 

C. Karen Liu: Modeling Human Movements for Robotics | CMU RI Seminar


by
28 October 2017



share this:

Link to video on YouTube

Abstract: “Creating realistic virtual humans has traditionally been considered a research problem in Computer Animation primarily for entertainment applications. With the recent breakthrough in collaborative robots and deep reinforcement learning, accurately modeling human movements and behaviors has become a common challenge faced by researchers in robotics, artificial intelligence, as well as Computer Animation. In this talk, I will focus on two different yet highly relevant problems: how to teach robots to move like humans and how to teach robots to interact with humans.
While Computer Animation research has shown that it is possible to teach a virtual human to mimic human athletes’ movements, transferring such complex controllers to robot hardware in the real world is perhaps even more challenging than learning the controllers themselves. In this talk, I will focus on two strategies to transfer highly dynamic skills from character animation to robots: teaching robots basic self-preservation motor skills and developing data-driven algorithms on transfer learning between simulation and the real world.
The second part of the talk will focus on robotic assistance with dressing, which is a prominent activities of daily living (ADLs) most commonly requested by older adults. To safely train a robot to physically interact with humans, one can design a generative model of human motion based on prior knowledge or recorded motion data. Although this approach has been successful in Computer Animation, such as generating locomotion, designing procedures for a loosely defined task, such as “being dressed”, is likely to be biased to the specific data or assumptions. I will describe a new approach to modeling human motion without being biased toward specific situations presented in the dataset.”




John Payne





Related posts :



Robot Talk Episode 126 – Why are we building humanoid robots?

  20 Jun 2025
In this special live recording at Imperial College London, Claire chatted to Ben Russell, Maryam Banitalebi Dehkordi, and Petar Kormushev about humanoid robotics.

Gearing up for RoboCupJunior: Interview with Ana Patrícia Magalhães

and   18 Jun 2025
We hear from the organiser of RoboCupJunior 2025 and find out how the preparations are going for the event.

Robot Talk Episode 125 – Chatting with robots, with Gabriel Skantze

  13 Jun 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Gabriel Skantze from KTH Royal Institute of Technology about having natural face-to-face conversations with robots.

Preparing for kick-off at RoboCup2025: an interview with General Chair Marco Simões

and   12 Jun 2025
We caught up with Marco to find out what exciting events are in store at this year's RoboCup.

Interview with Amar Halilovic: Explainable AI for robotics

  10 Jun 2025
Find out about Amar's research investigating the generation of explanations for robot actions.

Robot Talk Episode 124 – Robots in the performing arts, with Amy LaViers

  06 Jun 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Amy LaViers from the Robotics, Automation, and Dance Lab about the creative relationship between humans and machines.

Robot Talk Episode 123 – Standardising robot programming, with Nick Thompson

  30 May 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Nick Thompson from BOW about software that makes robots easier to program.

Congratulations to the #AAMAS2025 best paper, best demo, and distinguished dissertation award winners

  29 May 2025
Find out who won the awards presented at the International Conference on Autonomous Agents and Multiagent Systems last week.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2025.05 - Association for the Understanding of Artificial Intelligence


 












©2025.05 - Association for the Understanding of Artificial Intelligence