Robohub.org
 

C. Karen Liu: Modeling Human Movements for Robotics | CMU RI Seminar


by
28 October 2017



share this:

Link to video on YouTube

Abstract: “Creating realistic virtual humans has traditionally been considered a research problem in Computer Animation primarily for entertainment applications. With the recent breakthrough in collaborative robots and deep reinforcement learning, accurately modeling human movements and behaviors has become a common challenge faced by researchers in robotics, artificial intelligence, as well as Computer Animation. In this talk, I will focus on two different yet highly relevant problems: how to teach robots to move like humans and how to teach robots to interact with humans.
While Computer Animation research has shown that it is possible to teach a virtual human to mimic human athletes’ movements, transferring such complex controllers to robot hardware in the real world is perhaps even more challenging than learning the controllers themselves. In this talk, I will focus on two strategies to transfer highly dynamic skills from character animation to robots: teaching robots basic self-preservation motor skills and developing data-driven algorithms on transfer learning between simulation and the real world.
The second part of the talk will focus on robotic assistance with dressing, which is a prominent activities of daily living (ADLs) most commonly requested by older adults. To safely train a robot to physically interact with humans, one can design a generative model of human motion based on prior knowledge or recorded motion data. Although this approach has been successful in Computer Animation, such as generating locomotion, designing procedures for a loosely defined task, such as “being dressed”, is likely to be biased to the specific data or assumptions. I will describe a new approach to modeling human motion without being biased toward specific situations presented in the dataset.”




John Payne





Related posts :



#ICRA2025 social media round-up

  23 May 2025
Find out what the participants got up to at the International Conference on Robotics & Automation.

Robot Talk Episode 122 – Bio-inspired flying robots, with Jane Pauline Ramos Ramirez

  23 May 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Jane Pauline Ramos Ramirez from Delft University of Technology about drones that can move on land and in the air.

Robot Talk Episode 121 – Adaptable robots for the home, with Lerrel Pinto

  16 May 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Lerrel Pinto from New York University about using machine learning to train robots to adapt to new environments.

What’s coming up at #ICRA2025?

  16 May 2025
Find out what's in store at the IEEE International Conference on Robotics & Automation, which will take place from 19-23 May.

Robot see, robot do: System learns after watching how-tos

  14 May 2025
Researchers have developed a new robotic framework that allows robots to learn tasks by watching a how-to video

AI-powered robots help tackle Europe’s growing e-waste problem

  12 May 2025
EU-funded researchers have developed adaptable robots that could transform the way we recycle electronic waste, benefiting both the environment and the economy.

Robot Talk Episode 120 – Evolving robots to explore other planets, with Emma Hart

  09 May 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Emma Hart from Edinburgh Napier University about algorithms that 'evolve' better robot designs and control systems.

Robot Talk Episode 119 – Robotics for small manufacturers, with Will Kinghorn

  02 May 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Will Kinghorn from Made Smarter about how to increase adoption of new tech by small manufacturers.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2025.05 - Association for the Understanding of Artificial Intelligence


 












©2025.05 - Association for the Understanding of Artificial Intelligence