Robohub.org
 

Classifying dynamic obstacles


by
24 July 2010



share this:

Identifying dynamic objects in urban environments has become a major concern with the advent of autonomous cars in industry and competitions such as the Darpa Urban Challenge. However, detecting and classifying moving obstacles is extremely challenging because of the richness of real-world environments.

To this end, Katz et al. have developed a technique where cars learn to classify dynamic objects. The strategy consists in collecting large amounts of data using a laser scanner while driving around an urban environment. From this data, labels are automatically extracted to describe the dynamic objects (unsupervised learning). Automatic labeling is important because manual labeling is time consuming or might even be impossible if the data set is too large. These labels are then fed to a second supervised classifier that can be used to identify objects instantaneously, even with different sensors such as a camera.

Experiments were conducted with a car equipped with a laser scanner and a camera driving around the University of Sydney campus between 0–40 km/h. Results showed the robust and accurate classification of bikes, pedestrians and cars.




Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :



Robot see, robot do: System learns after watching how-tos

  14 May 2025
Researchers have developed a new robotic framework that allows robots to learn tasks by watching a how-to video

AI-powered robots help tackle Europe’s growing e-waste problem

  12 May 2025
EU-funded researchers have developed adaptable robots that could transform the way we recycle electronic waste, benefiting both the environment and the economy.

Robot Talk Episode 120 – Evolving robots to explore other planets, with Emma Hart

  09 May 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Emma Hart from Edinburgh Napier University about algorithms that 'evolve' better robot designs and control systems.

Robot Talk Episode 119 – Robotics for small manufacturers, with Will Kinghorn

  02 May 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Will Kinghorn from Made Smarter about how to increase adoption of new tech by small manufacturers.

Multi-agent path finding in continuous environments

  01 May 2025
How can a group of agents minimise their journey length whilst avoiding collisions?

Interview with Yuki Mitsufuji: Improving AI image generation

  29 Apr 2025
Find out about two pieces of research tackling different aspects of image generation.

Robot Talk Episode 118 – Soft robotics and electronic skin, with Miranda Lowther

  25 Apr 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Miranda Lowther from the University of Bristol about soft, sensitive electronic skin for prosthetic limbs.

Interview with Amina Mević: Machine learning applied to semiconductor manufacturing

  17 Apr 2025
Find out how Amina is using machine learning to develop an explainable multi-output virtual metrology system.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2025.05 - Association for the Understanding of Artificial Intelligence


 












©2025.05 - Association for the Understanding of Artificial Intelligence