Robohub.org
 

Classifying dynamic obstacles


by
24 July 2010



share this:

Identifying dynamic objects in urban environments has become a major concern with the advent of autonomous cars in industry and competitions such as the Darpa Urban Challenge. However, detecting and classifying moving obstacles is extremely challenging because of the richness of real-world environments.

To this end, Katz et al. have developed a technique where cars learn to classify dynamic objects. The strategy consists in collecting large amounts of data using a laser scanner while driving around an urban environment. From this data, labels are automatically extracted to describe the dynamic objects (unsupervised learning). Automatic labeling is important because manual labeling is time consuming or might even be impossible if the data set is too large. These labels are then fed to a second supervised classifier that can be used to identify objects instantaneously, even with different sensors such as a camera.

Experiments were conducted with a car equipped with a laser scanner and a camera driving around the University of Sydney campus between 0–40 km/h. Results showed the robust and accurate classification of bikes, pedestrians and cars.




Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :

“Robot, make me a chair”

  17 Feb 2026
An AI-driven system lets users design and build simple, multicomponent objects by describing them with words.

Robot Talk Episode 144 – Robot trust in humans, with Samuele Vinanzi

  13 Feb 2026
In the latest episode of the Robot Talk podcast, Claire chatted to Samuele Vinanzi from Sheffield Hallam University about how robots can tell whether to trust or distrust people.

How can robots acquire skills through interactions with the physical world? An interview with Jiaheng Hu

and   12 Feb 2026
Find out more about work published at the Conference on Robot Learning (CoRL).

Sven Koenig wins the 2026 ACM/SIGAI Autonomous Agents Research Award

  10 Feb 2026
Sven honoured for his work on AI planning and search.

Robot Talk Episode 143 – Robots for children, with Elmira Yadollahi

  06 Feb 2026
In the latest episode of the Robot Talk podcast, Claire chatted to Elmira Yadollahi from Lancaster University about how children interact with and relate to robots.

New frontiers in robotics at CES 2026

  03 Feb 2026
Henry Hickson reports on the exciting developments in robotics at Consumer Electronics Show 2026.

Robot Talk Episode 142 – Collaborative robot arms, with Mark Gray

  30 Jan 2026
In the latest episode of the Robot Talk podcast, Claire chatted to Mark Gray from Universal Robots about their lightweight robotic arms that work alongside humans.

Robot Talk Episode 141 – Our relationship with robot swarms, with Razanne Abu-Aisheh

  23 Jan 2026
In the latest episode of the Robot Talk podcast, Claire chatted to Razanne Abu-Aisheh from the University of Bristol about how people feel about interacting with robot swarms.


Robohub is supported by:





 













©2026.01 - Association for the Understanding of Artificial Intelligence