Robohub.org
 

Classifying dynamic obstacles

by
24 July 2010



share this:

Identifying dynamic objects in urban environments has become a major concern with the advent of autonomous cars in industry and competitions such as the Darpa Urban Challenge. However, detecting and classifying moving obstacles is extremely challenging because of the richness of real-world environments.

To this end, Katz et al. have developed a technique where cars learn to classify dynamic objects. The strategy consists in collecting large amounts of data using a laser scanner while driving around an urban environment. From this data, labels are automatically extracted to describe the dynamic objects (unsupervised learning). Automatic labeling is important because manual labeling is time consuming or might even be impossible if the data set is too large. These labels are then fed to a second supervised classifier that can be used to identify objects instantaneously, even with different sensors such as a camera.

Experiments were conducted with a car equipped with a laser scanner and a camera driving around the University of Sydney campus between 0–40 km/h. Results showed the robust and accurate classification of bikes, pedestrians and cars.




Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :



Robot Talk Episode 101 – Christos Bergeles

In the latest episode of the Robot Talk podcast, Claire chatted to Christos Bergeles from King's College London about micro-surgical robots to deliver therapies deep inside the body.
06 December 2024, by

Robot Talk Episode 100 – Mini Rai

In the latest episode of the Robot Talk podcast, Claire chatted to Mini Rai from Orbit Rise about orbital and planetary robots.
29 November 2024, by

Robot Talk Episode 99 – Joe Wolfel

In the latest episode of the Robot Talk podcast, Claire chatted to Joe Wolfel from Terradepth about autonomous submersible robots for collecting ocean data.
22 November 2024, by

Robot Talk Episode 98 – Gabriella Pizzuto

In the latest episode of the Robot Talk podcast, Claire chatted to Gabriella Pizzuto from the University of Liverpool about intelligent robotic manipulators for laboratory automation.
15 November 2024, by

Online hands-on science communication training – sign up here!

Find out how to communicate about your work with experts from Robohub, AIhub, and IEEE Spectrum.
13 November 2024, by

Robot Talk Episode 97 – Pratap Tokekar

In the latest episode of the Robot Talk podcast, Claire chatted to Pratap Tokekar from the University of Maryland about how teams of robots with different capabilities can work together.
08 November 2024, by





Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association