Robohub.org
 

Finding outdoor odor sources using particle filters


by
05 April 2011



share this:

Robots with smell could be used to find sources of toxic gas, search for drugs, locate survivors under rubble or hidden mines. Robots have an advantage over sniffer dogs since they can enter dangerous areas and could potentially be deployed rapidly and at lower costs.

Most of the work on olfaction robots is done in controlled laboratory environments. Instead, Li et al. are looking at how robots can localize odor sources in outdoor environments with changing wind that can be turbulent and strong. To do this, they’ve developed a novel algorithm based on particle filters that tracks the location of the odor source over time.

Experiments were done using a two-wheeled robot equipped with a gas sensor, an anemometer (for wind measurements) and an electronic compass. The robot was placed in an outdoor 10 m × 10 m area and was asked to search for a humidifier containing liquid ethanol (odor source). To find the gas plume, the robot would perform spirals. As soon as gas was sensed, the robot followed a plume-tracing strategy to collect more information about the odor source. The videos below show the robot behavior (top) and the particle filter algorithm used (bottom).

Results show that the particle filter method is suitable for challenging outdoor odor source localization and that it outperforms Bayesian-inference-based methods.




Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :



Robot Talk Episode 133 – Creating sociable robot collaborators, with Heather Knight

  14 Nov 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Heather Knight from Oregon State University about applying methods from the performing arts to robotics.

CoRL2025 – RobustDexGrasp: dexterous robot hand grasping of nearly any object

  11 Nov 2025
A new reinforcement learning framework enables dexterous robot hands to grasp diverse objects with human-like robustness and adaptability—using only a single camera.

Robot Talk Episode 132 – Collaborating with industrial robots, with Anthony Jules

  07 Nov 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Anthony Jules from Robust.AI about their autonomous warehouse robots that work alongside humans.

Teaching robots to map large environments

  05 Nov 2025
A new approach could help a search-and-rescue robot navigate an unpredictable environment by rapidly generating an accurate map of its surroundings.

Robot Talk Episode 131 – Empowering game-changing robotics research, with Edith-Clare Hall

  31 Oct 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Edith-Clare Hall from the Advanced Research and Invention Agency about accelerating scientific and technological breakthroughs.

A flexible lens controlled by light-activated artificial muscles promises to let soft machines see

  30 Oct 2025
Researchers have designed an adaptive lens made of soft, light-responsive, tissue-like materials.

Social media round-up from #IROS2025

  27 Oct 2025
Take a look at what participants got up to at the IEEE/RSJ International Conference on Intelligent Robots and Systems.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence