Robohub.org
 

High-speed walkers pretend to go downhill

by
03 February 2011



share this:

The typical way to make a bipedal robot walk is to actuate its leg joints, strap a bunch of sensors to measure its state and add a tight control loop to make sure it is performing the desired steps.

In a radically different approach, passive dynamic walkers can step down slopes without the need for sensing, control or energy. Their driving force comes from gravitation pushing them down the hill. If well designed, and started with adequate initial conditions, the walker will reach a rhythmic and stable walking gait that prevents it from falling on its nose.

Of course, always walking downhill is hardly a viable solution. To make robots walk on level ground, Dong et al. propose to trick the robot into thinking it’s walking on a slope. This is done by extending the back leg of the robot (stance leg) while shortening its front leg (swing leg) before it hits the ground as shown in the figure below (steps I through IV).

The authors propose an analytical model to predict the energy efficiency and speed of the walker based on easy to tune parameters. The result is an energy efficient walker that can move at high speeds. To validate their model, experiments were done on the real walker below. The robot was able to top at a full 1.12 m/s speed, or 4.48leg/s, which is the fastest walking gate demonstrated so far. The leg length was changed by bending and unbending the knee joints.




Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :



Robot Talk Episode 52 – Sara Bernardini

In this week's episode of the Robot Talk podcast, host Claire Asher chatted to Sara Bernardini from Royal Holloway University of London all about decision-making, reconfigurable robots, and oceanography.
09 June 2023, by

Sponge makes robotic device a soft touch

A simple sponge has improved how robots grasp, scientists from the University of Bristol have found.
07 June 2023, by

#ICRA2023 awards finalists and winners

In this post we bring you all the paper awards finalists and winners presented during the 2023 edition of the IEEE International Conference on Robotics and Automation (ICRA).
05 June 2023, by

Ranking the best humanoid robots of 2023

Is Rosie the Robot Maid from the Jetsons here yet? As more and more companies announce their work towards the affordable humanoid robot, I wanted to create a reference chart.
03 June 2023, by

Robot Talk Episode 51 – James Kell

In this week's episode of the Robot Talk podcast, host Claire Asher chatted to James Kell from Jacobs Engineering UK all about civil infrastructure, nuclear robotics and jet engine inspection.
02 June 2023, by

Automate 2023 recap and the receding horizon problem

“Thirty million developers” are the answer to driving billion-dollar robot startups, exclaimed Eliot Horowitz of Viam last week at Automate.
01 June 2023, by





©2021 - ROBOTS Association


 












©2021 - ROBOTS Association