Robohub.org
 

How to fine tune your robot’s payload, and why

by and
20 January 2016



share this:

PayloadPayload, grip force, weight, and reach are all data that are used to describe and differentiate robots from each other. Payload is mostly used to determine the weight that the robot can carry through space. However, in order to enhance your robot program, you may want to fine tune your robot payload. Here’s why.

Safety

For safety purposes you should set your payload. In fact, especially for collaborative robots where human-robot interaction is anticipated, it is important to determine what the reaction of the robot should be. Since the robot is able to feel an impact to its joints or at its base, it is normal to set the payload of each motion of the robot to tell it that it is carrying X weight and that it should be feeling Y force. If this force is exceeded, then this would be an abnormal force and could mean a problem.

For example, take a robot that is carrying a 5kg (49.05N) payload. The program has been set in order to tell the robot it has acquired this payload in its gripper. If under normal operating conditions the robot accidentally hits a human operator, then you would want the robot to react, preferably to slow down and stop. If the safety setting were set to 60N, this means the robot is very sensitive and will stop at +/-10N impact, which is pretty small.

To take full advantage of the robot programming, you should set the program when the robot isn’t carrying a specific payload. The safety setting will consequently be adjusted.

Acceleration

The same principle applies for acceleration. Since the robot has been set to a certain acceleration and that acceleration is done by powering the robot joints, the robot needs to know the payload carried. In fact, if the acceleration has to be fast and the payload is at its max, the motor will in all likelihood read an overcurrent and call an emergency stop.

The opposite is also true: if you have no payload, but the robot thinks it has a certain payload, it will read an undercurrent. This will lead the robot to accelerate quite fast, which can produce a collision or a misalignment of the robot arm.

Don’t forget that the base payload has to include the robot tool. The full payload should consider the robot tool and the part it is carrying.

How to know if my payload is set correctly?

Since there are a couple of factors that can contribute to your robot payload, it may be hard to determine the exact payload to be set in the program. Luckily, there is a very easy way to test if your robot payload has been set correctly.

Since we did some of our testing with Universal Robots I will use this specific situation, but most robots will follow the same rules.

You will set the robot payload in your basic settings; with UR you can touch the button at the back of the teach pendant called: ”FREE DRIVE”. If the robot arm moves up, the payload is set too low or is too light. If the robot arm is going down, the payload is set to high or is too heavy. With this approach you can then fine tune your payload — just note the adjustment needed and adjust the payload setting in your UR program.

These are a couple of easy tricks that can save you a lot of trouble when debugging your robot. We will be posting more technical articles in the next few weeks and would like to have your feedback and your input on problems you have experienced (in this case) with your robot payload.

 



tags: ,


Mathieu Bélanger-Barrette Mathieu works as the production engineer at Robotiq, where he strives to constantly optimize the production line for Robotiq Grippers.
Mathieu Bélanger-Barrette Mathieu works as the production engineer at Robotiq, where he strives to constantly optimize the production line for Robotiq Grippers.

Robotiq Inc. Robotiq's mission is to free human hands from tedious tasks so companies and workers can focus where they truly create value.
Robotiq Inc. Robotiq's mission is to free human hands from tedious tasks so companies and workers can focus where they truly create value.





Related posts :



One giant leap for the mini cheetah

A new control system, demonstrated using MIT’s robotic mini cheetah, enables four-legged robots to jump across uneven terrain in real-time.
23 October 2021, by

Robotics Today latest talks – Raia Hadsell (DeepMind), Koushil Sreenath (UC Berkeley) and Antonio Bicchi (Istituto Italiano di Tecnologia)

Robotics Today held three more online talks since we published the one from Amanda Prorok (Learning to Communicate in Multi-Agent Systems). In this post we bring you the last talks that Robotics Today...
21 October 2021, by and

Sense Think Act Pocast: Erik Schluntz

In this episode, Audrow Nash interviews Erik Schluntz, co-founder and CTO of Cobalt Robotics, which makes a security guard robot. Erik speaks about how their robot handles elevators, how they have hum...
19 October 2021, by and

A robot that finds lost items

Researchers at MIT have created RFusion, a robotic arm with a camera and radio frequency (RF) antenna attached to its gripper, that fuses signals from the antenna with visual input from the camera to locate and retrieve an item, even if the item is buried under a pile and completely out of view.
18 October 2021, by

Robohub gets a fresh look

If you visited Robohub this week, you may have spotted a big change: how this blog looks now! On Tuesday (coinciding with Ada Lovelace Day and our ‘50 women in robotics that you need to know about‘ by chance), Robohub got a massive modernisation on its look by our technical director Ioannis K. Erripis and his team.
17 October 2021, by
ep.

339

podcast

High Capacity Ride Sharing, with Alex Wallar

In this episode, our interviewer Lilly speaks to Alex Wallar, co-founder and CTO of The Routing Company. Wallar shares his background in multi-robot path-planning and optimization, and his research on scheduling and routing algorithms for high-capacity ride-sharing. They discuss how The Routing Company helps cities meet the needs of their people, the technical ins and outs of their dispatcher and assignment system, and the importance of public transit to cities and their economics.
12 October 2021, by





©2021 - ROBOTS Association


 












©2021 - ROBOTS Association