Robohub.org
 

How to fine tune your robot’s payload, and why

by and
20 January 2016



share this:

PayloadPayload, grip force, weight, and reach are all data that are used to describe and differentiate robots from each other. Payload is mostly used to determine the weight that the robot can carry through space. However, in order to enhance your robot program, you may want to fine tune your robot payload. Here’s why.

Safety

For safety purposes you should set your payload. In fact, especially for collaborative robots where human-robot interaction is anticipated, it is important to determine what the reaction of the robot should be. Since the robot is able to feel an impact to its joints or at its base, it is normal to set the payload of each motion of the robot to tell it that it is carrying X weight and that it should be feeling Y force. If this force is exceeded, then this would be an abnormal force and could mean a problem.

For example, take a robot that is carrying a 5kg (49.05N) payload. The program has been set in order to tell the robot it has acquired this payload in its gripper. If under normal operating conditions the robot accidentally hits a human operator, then you would want the robot to react, preferably to slow down and stop. If the safety setting were set to 60N, this means the robot is very sensitive and will stop at +/-10N impact, which is pretty small.

To take full advantage of the robot programming, you should set the program when the robot isn’t carrying a specific payload. The safety setting will consequently be adjusted.

Acceleration

The same principle applies for acceleration. Since the robot has been set to a certain acceleration and that acceleration is done by powering the robot joints, the robot needs to know the payload carried. In fact, if the acceleration has to be fast and the payload is at its max, the motor will in all likelihood read an overcurrent and call an emergency stop.

The opposite is also true: if you have no payload, but the robot thinks it has a certain payload, it will read an undercurrent. This will lead the robot to accelerate quite fast, which can produce a collision or a misalignment of the robot arm.

Don’t forget that the base payload has to include the robot tool. The full payload should consider the robot tool and the part it is carrying.

How to know if my payload is set correctly?

Since there are a couple of factors that can contribute to your robot payload, it may be hard to determine the exact payload to be set in the program. Luckily, there is a very easy way to test if your robot payload has been set correctly.

Since we did some of our testing with Universal Robots I will use this specific situation, but most robots will follow the same rules.

You will set the robot payload in your basic settings; with UR you can touch the button at the back of the teach pendant called: ”FREE DRIVE”. If the robot arm moves up, the payload is set too low or is too light. If the robot arm is going down, the payload is set to high or is too heavy. With this approach you can then fine tune your payload — just note the adjustment needed and adjust the payload setting in your UR program.

These are a couple of easy tricks that can save you a lot of trouble when debugging your robot. We will be posting more technical articles in the next few weeks and would like to have your feedback and your input on problems you have experienced (in this case) with your robot payload.

 



tags: ,


Mathieu Bélanger-Barrette Mathieu works as the production engineer at Robotiq, where he strives to constantly optimize the production line for Robotiq Grippers.
Mathieu Bélanger-Barrette Mathieu works as the production engineer at Robotiq, where he strives to constantly optimize the production line for Robotiq Grippers.

Robotiq Inc. Robotiq's mission is to free human hands from tedious tasks so companies and workers can focus where they truly create value.
Robotiq Inc. Robotiq's mission is to free human hands from tedious tasks so companies and workers can focus where they truly create value.





Related posts :



New imaging method makes tiny robots visible in the body

Microrobots have the potential to revolutionize medicine. Researchers at the Max Planck ETH Centre for Learning Systems have now developed an imaging technique that for the first time recognises cell-​sized microrobots individually and at high resolution in a living organism.
20 May 2022, by

A draft open standard for an Ethical Black Box

Within the RoboTIPS project, we have developed and tested several model of Ethical Black Boxes, including one for an e-puck robot, and another for the MIRO robot.
19 May 2022, by

Unable to attend #ICRA2022 for accessibility issues? Or just curious to see robots?

There are many things that can make it difficult to attend an in person conference in the United States and so the ICRA Organizing Committee, the IEEE Robotics and Automation Society and OhmniLabs would like to help you attend ICRA virtually.
17 May 2022, by
ep.

350

podcast

Duckietown Competition Spotlight, with Dr Liam Paull

Dr. Liam Paull, cofounder of the Duckietown competition talks about the only robotics competition where Rubber Duckies are the passengers on an autonomous driving track.
17 May 2022, by

Designing societally beneficial Reinforcement Learning (RL) systems

In this post, we aim to illustrate the different modalities harms can take when augmented with the temporal axis of RL. To combat these novel societal risks, we also propose a new kind of documentation for dynamic Machine Learning systems which aims to assess and monitor these risks both before and after deployment.
15 May 2022, by

Innovative ‘smart socks’ could help millions living with dementia

‘Smart socks’ that track rising distress in the wearer could improve the wellbeing of millions of people with dementia, non-verbal autism and other conditions that affect communication.
13 May 2022, by





©2021 - ROBOTS Association


 












©2021 - ROBOTS Association