Robohub.org
 

How to make a printed circuit board using a diode laser with a 3D printer


by
20 June 2016



share this:
Source: George Fomitchev

Source: George Fomitchev

3D-printers have opened endless possibilities for home production and rapid prototyping. You can easily create practically any model in a 3D-program and 3D print it. But until now, only a few people thought about the possibility to 3D print electronics for particular solutions (model).

Until recently, in order to make a circuit board for a prototype, you had to make it using a soldering iron, or order a short production run. However, many of us can make it using a conventional iron and a laser printer.

However, this process is not very pleasing aesthetically or technologically. In our article, we would like to present another method to use. 3D printers or DIY Engraver can use this method. You can install a diode laser on almost any 3D-printer, setting it as an addition or in place of the extruder. Diode lasers are small in size and compact. Their relatively small power output compared with that of CO2 lasers is not a drawback, in this case.

Here’s an example of how to assemble a DIY engraver:

Or a constructor of a makeblock plotter xy type:

What does the process of the circuit board manufacturing at home or in the office look like?

For this, we need a copperized glass fiber plate, any dark vinyl film (any dark film that a laser can burn through will fit), iron chloride (sold openly in stores of chemical reagents) and a diode laser installed on a 3D printer. Its power output is not too important, but we recommend using a diode laser of more than 2W (2000 mW).

By the way, installing a laser on any 3D printer is easy:

How to install it on an Ultimaker:

https://www.youtube.com/watch?v=soYh5Kyv4cs

Or, how to install on a WanHao DuPlicator i3:

https://www.youtube.com/watch?v=yf-uFAynGhM

Okay, let’s begin!

1) Create a circuit board model using any program of an InkScape type (inversion picture. Later, we’ll explain why inversion).

Source: George Fomitchev

Source: George Fomitchev

2) Convert it into the gcode.

Source: George Fomitchev

Source: George Fomitchev

3) Stick the vinyl film onto the copperized plate of glass fiber.

Source: George Fomitchev

Source: George Fomitchev

Source: George Fomitchev

Source: George Fomitchev

4) Place the vinyl-coated glass fiber plate onto the work table of the 3D printer, and turn on the 3D printer in the laser cutting / engraving mode.

Source: George Fomitchev

Source: George Fomitchev

5) The laser will burn on the vinyl film an inversion image of the pattern.

Source: George Fomitchev

Source: George Fomitchev

Source: George Fomitchev

Source: George Fomitchev

Source: George Fomitchev

Source: George Fomitchev

6) Dissolve the iron chloride powder in water (do not worry, no chemical reaction will follow).

Source: George Fomitchev

Source: George Fomitchev

7) Put the glass fiber plate into the iron chloride water for 45-60 minutes.

Source: George Fomitchev

Source: George Fomitchev

The copper on the glass fiber surface, free of the film after the laser burning, will react with the iron chloride (copper etching chemical reaction) and goes into the solution leaving clean glass fiber in the contours of the inversion image.

Then, make holes for the necessary connectors with a small drill, or leave as is, and solder the connectors on top of the circuit board. Done!

So, we have told you how you can create a small shop – laboratory for circuit boards manufacturing, using a 3D printer and a laser.

The technology is not perfect and has several shortcomings, but it is efficient and can be used at home and small laboratories.



tags:


George Fomitchev is the founder for Endurance.
George Fomitchev is the founder for Endurance.





Related posts :



Robot Talk Episode 110 – Designing ethical robots, with Catherine Menon

  21 Feb 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Catherine Menon from the University of Hertfordshire about designing home assistance robots with ethics in mind.

Robot Talk Episode 109 – Building robots at home, with Dan Nicholson

  14 Feb 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Dan Nicholson from MakerForge.tech about creating open source robotics projects you can do at home.

Robot Talk Episode 108 – Giving robots the sense of touch, with Anuradha Ranasinghe

  07 Feb 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Anuradha Ranasinghe from Liverpool Hope University about haptic sensors for wearable tech and robotics.

Robot Talk Episode 107 – Animal-inspired robot movement, with Robert Siddall

  31 Jan 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Robert Siddall from the University of Surrey about novel robot designs inspired by the way real animals move.

Robot Talk Episode 106 – The future of intelligent systems, with Didem Gurdur Broo

  24 Jan 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Didem Gurdur Broo from Uppsala University about how to shape the future of robotics, autonomous vehicles, and industrial automation.

Robot Talk Episode 105 – Working with robots in industry, with Gianmarco Pisanelli 

  17 Jan 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Gianmarco Pisanelli from the Advanced Manufacturing Research Centre about how to promote the safe and intuitive use of robots in manufacturing.

Robot Talk Episode 104 – Robot swarms inspired by nature, with Kirstin Petersen

  10 Jan 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Kirstin Petersen from Cornell University about how robots can work together to achieve complex behaviours.

Robot Talk Episode 103 – Delivering medicine by drone, with Keenan Wyrobek

  20 Dec 2024
In the latest episode of the Robot Talk podcast, Claire chatted to Keenan Wyrobek from Zipline about drones for delivering life-saving medicine to remote locations.





Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association