Robohub.org
 

How to make a printed circuit board using a diode laser with a 3D printer

by
20 June 2016



share this:
Source: George Fomitchev

Source: George Fomitchev

3D-printers have opened endless possibilities for home production and rapid prototyping. You can easily create practically any model in a 3D-program and 3D print it. But until now, only a few people thought about the possibility to 3D print electronics for particular solutions (model).

Until recently, in order to make a circuit board for a prototype, you had to make it using a soldering iron, or order a short production run. However, many of us can make it using a conventional iron and a laser printer.

However, this process is not very pleasing aesthetically or technologically. In our article, we would like to present another method to use. 3D printers or DIY Engraver can use this method. You can install a diode laser on almost any 3D-printer, setting it as an addition or in place of the extruder. Diode lasers are small in size and compact. Their relatively small power output compared with that of CO2 lasers is not a drawback, in this case.

Here’s an example of how to assemble a DIY engraver:

Or a constructor of a makeblock plotter xy type:

What does the process of the circuit board manufacturing at home or in the office look like?

For this, we need a copperized glass fiber plate, any dark vinyl film (any dark film that a laser can burn through will fit), iron chloride (sold openly in stores of chemical reagents) and a diode laser installed on a 3D printer. Its power output is not too important, but we recommend using a diode laser of more than 2W (2000 mW).

By the way, installing a laser on any 3D printer is easy:

How to install it on an Ultimaker:

Or, how to install on a WanHao DuPlicator i3:

Okay, let’s begin!

1) Create a circuit board model using any program of an InkScape type (inversion picture. Later, we’ll explain why inversion).

Source: George Fomitchev

Source: George Fomitchev

2) Convert it into the gcode.

Source: George Fomitchev

Source: George Fomitchev

3) Stick the vinyl film onto the copperized plate of glass fiber.

Source: George Fomitchev

Source: George Fomitchev

Source: George Fomitchev

Source: George Fomitchev

4) Place the vinyl-coated glass fiber plate onto the work table of the 3D printer, and turn on the 3D printer in the laser cutting / engraving mode.

Source: George Fomitchev

Source: George Fomitchev

5) The laser will burn on the vinyl film an inversion image of the pattern.

Source: George Fomitchev

Source: George Fomitchev

Source: George Fomitchev

Source: George Fomitchev

Source: George Fomitchev

Source: George Fomitchev

6) Dissolve the iron chloride powder in water (do not worry, no chemical reaction will follow).

Source: George Fomitchev

Source: George Fomitchev

7) Put the glass fiber plate into the iron chloride water for 45-60 minutes.

Source: George Fomitchev

Source: George Fomitchev

The copper on the glass fiber surface, free of the film after the laser burning, will react with the iron chloride (copper etching chemical reaction) and goes into the solution leaving clean glass fiber in the contours of the inversion image.

Then, make holes for the necessary connectors with a small drill, or leave as is, and solder the connectors on top of the circuit board. Done!

So, we have told you how you can create a small shop – laboratory for circuit boards manufacturing, using a 3D printer and a laser.

The technology is not perfect and has several shortcomings, but it is efficient and can be used at home and small laboratories.



tags: , , , , ,


George Fomitchev is the founder for Endurance.
George Fomitchev is the founder for Endurance.





Related posts :



A robot that finds lost items

Researchers at MIT have created RFusion, a robotic arm with a camera and radio frequency (RF) antenna attached to its gripper, that fuses signals from the antenna with visual input from the camera to locate and retrieve an item, even if the item is buried under a pile and completely out of view.
18 October 2021, by

Robohub gets a fresh look

If you visited Robohub this week, you may have spotted a big change: how this blog looks now! On Tuesday (coinciding with Ada Lovelace Day and our ‘50 women in robotics that you need to know about‘ by chance), Robohub got a massive modernisation on its look by our technical director Ioannis K. Erripis and his team.
17 October 2021, by
ep.

339

podcast

High Capacity Ride Sharing, with Alex Wallar

In this episode, our interviewer Lilly speaks to Alex Wallar, co-founder and CTO of The Routing Company. Wallar shares his background in multi-robot path-planning and optimization, and his research on scheduling and routing algorithms for high-capacity ride-sharing. They discuss how The Routing Company helps cities meet the needs of their people, the technical ins and outs of their dispatcher and assignment system, and the importance of public transit to cities and their economics.
12 October 2021, by

50 women in robotics you need to know about 2021

It’s Ada Lovelace Day and once again we’re delighted to introduce you to “50 women in robotics you need to know about”! From the Afghanistan Girls Robotics Team to K.G.Engelhardt who in 1989 ...
12 October 2021, by and

Join the Women in Robotics Photo Challenge

How can women feel as if they belong in robotics if we can't see any pictures of women building or programming robots? The Civil Rights Activist Marian Wright Edelson aptly said, "You can't be what yo...
12 October 2021, by

Sense Think Act Podcast: Melonee Wise

In this episode, Audrow Nash speaks with Melonee Wise, former CEO of Fetch Robotics and current VP of Robotics Automation at Zebra Technologies. Melonee speaks about the origin of Fetch Robotics, her ...
11 October 2021, by and





©2021 - ROBOTS Association


 












©2021 - ROBOTS Association