Robohub.org
 

Human motion database


by
30 October 2010



share this:

By creating a database of human motions, Yamane et al. hope to allow robots to recognize human behaviors or move like humans. To do this, they analyze motion clips of people performing all sorts of actions such as jumping, running and walking. Motion clips can be seen as a sequence of frames in which the body’s state is described by virtual markers that have a specific position and velocity as shown below. The challenge is then to break these clips down so that the important information can be stored and used in an intelligent manner.


The method used to create the database is described in the figure below. Starting from motion clips, they construct a binary tree. The root of this tree contains all frames in all clips. The root is then split into two groups where each group has similar features. Each one of these groups is then divided and so on until the tree is complete. Each layer of the tree contains all the frames in the dataset. Since for each frame it is known what frame follows (based on the clips), it is possible to compute the probability of transitioning from one node to the other (node transition graphs).

By using this database, Yamane et al. are able to recognize newly observed motion sequences, estimate the current state and predict future motions, and plan new human-like motions.




Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :



Robot Talk Episode 132 – Collaborating with industrial robots, with Anthony Jules

  07 Nov 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Anthony Jules from Robust.AI about their autonomous warehouse robots that work alongside humans.

Teaching robots to map large environments

  05 Nov 2025
A new approach could help a search-and-rescue robot navigate an unpredictable environment by rapidly generating an accurate map of its surroundings.

Robot Talk Episode 131 – Empowering game-changing robotics research, with Edith-Clare Hall

  31 Oct 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Edith-Clare Hall from the Advanced Research and Invention Agency about accelerating scientific and technological breakthroughs.

A flexible lens controlled by light-activated artificial muscles promises to let soft machines see

  30 Oct 2025
Researchers have designed an adaptive lens made of soft, light-responsive, tissue-like materials.

Social media round-up from #IROS2025

  27 Oct 2025
Take a look at what participants got up to at the IEEE/RSJ International Conference on Intelligent Robots and Systems.

Using generative AI to diversify virtual training grounds for robots

  24 Oct 2025
New tool from MIT CSAIL creates realistic virtual kitchens and living rooms where simulated robots can interact with models of real-world objects, scaling up training data for robot foundation models.

Robot Talk Episode 130 – Robots learning from humans, with Chad Jenkins

  24 Oct 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Chad Jenkins from University of Michigan about how robots can learn from people and assist us in our daily lives.

Robot Talk at the Smart City Robotics Competition

  22 Oct 2025
In a special bonus episode of the podcast, Claire chatted to competitors, exhibitors, and attendees at the Smart City Robotics Competition in Milton Keynes.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence