Robohub.org
 

Ingredients for autonomous construction


by
28 May 2012



share this:

Most research in robotics focuses on a specific problem: building better hardware, implementing new algorithms, or demonstrating a new task. Combining all these state-of-the-art ingredients into a single system is the key to making autonomous robots capable of performing useful work in realistic environments. With this in mind, Stéphane Magnenat walks us through all the steps needed to perform autonomous construction using the marXbot in the video below. To make the task challenging, the building blocks from which robots build towers are distributed throughout the environment, which is riddled with ditches that can only be overcome by using these same building blocks as bridges. Because there are few building blocks, the robot has to figure out how to move the blocks in an near-to-optimal way so that it can navigate the environment while still building the tower. Furthermore, the robot does not have any information about its environment beforehand and can only use limited computational resources, as is often the case in realistic robot scenarios.

Solving this challenge requires an integrated system architecture (see figure below) that leverages modern algorithms and representations. The architecture is implemented using ASEBA, which is an open-source control architecture for microcontrollers. The low-level implements reactive behaviors such as avoiding obstacles and ditches or grasping objects. The high-level instead takes care of mapping the environment (using a version of FastSLAM), path-planning and reasoning.

The authors hope that such an integrated approach could help shed light on the capabilities required for intelligent physical interaction with the real world.




Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :



Robots to navigate hiking trails

  12 Jan 2026
Find out more about work presented at IROS 2025 on autonomous hiking trail navigation via semantic segmentation and geometric analysis.

Robot Talk Episode 139 – Advanced robot hearing, with Christine Evers

  09 Jan 2026
In the latest episode of the Robot Talk podcast, Claire chatted to Christine Evers from University of Southampton about helping robots understand the world around them through sound.

Meet the AI-powered robotic dog ready to help with emergency response

  07 Jan 2026
Built by Texas A&M engineering students, this four-legged robot could be a powerful ally in search-and-rescue missions.

MIT engineers design an aerial microrobot that can fly as fast as a bumblebee

  31 Dec 2025
With insect-like speed and agility, the tiny robot could someday aid in search-and-rescue missions.

Robohub highlights 2025

  29 Dec 2025
We take a look back at some of the interesting blog posts, interviews and podcasts that we've published over the course of the year.

The science of human touch – and why it’s so hard to replicate in robots

  24 Dec 2025
Trying to give robots a sense of touch forces us to confront just how astonishingly sophisticated human touch really is.

Bio-hybrid robots turn food waste into functional machines

  22 Dec 2025
EPFL scientists have integrated discarded crustacean shells into robotic devices, leveraging the strength and flexibility of natural materials for robotic applications.

Robot Talk Episode 138 – Robots in the environment, with Stefano Mintchev

  19 Dec 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Stefano Mintchev from ETH Zürich about robots to explore and monitor the natural environment.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence