Robohub.org
 

Ingredients for autonomous construction


by
28 May 2012



share this:

Most research in robotics focuses on a specific problem: building better hardware, implementing new algorithms, or demonstrating a new task. Combining all these state-of-the-art ingredients into a single system is the key to making autonomous robots capable of performing useful work in realistic environments. With this in mind, Stéphane Magnenat walks us through all the steps needed to perform autonomous construction using the marXbot in the video below. To make the task challenging, the building blocks from which robots build towers are distributed throughout the environment, which is riddled with ditches that can only be overcome by using these same building blocks as bridges. Because there are few building blocks, the robot has to figure out how to move the blocks in an near-to-optimal way so that it can navigate the environment while still building the tower. Furthermore, the robot does not have any information about its environment beforehand and can only use limited computational resources, as is often the case in realistic robot scenarios.

Solving this challenge requires an integrated system architecture (see figure below) that leverages modern algorithms and representations. The architecture is implemented using ASEBA, which is an open-source control architecture for microcontrollers. The low-level implements reactive behaviors such as avoiding obstacles and ditches or grasping objects. The high-level instead takes care of mapping the environment (using a version of FastSLAM), path-planning and reasoning.

The authors hope that such an integrated approach could help shed light on the capabilities required for intelligent physical interaction with the real world.




Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :



Robots to the rescue: miniature robots offer new hope for search and rescue operations

  09 Sep 2025
Small two-wheeled robots, equipped with high-tech sensors, will help to find survivors faster in the aftermath of disasters.

#IJCAI2025 distinguished paper: Combining MORL with restraining bolts to learn normative behaviour

and   04 Sep 2025
The authors introduce a framework for guiding reinforcement learning agents to comply with social, legal, and ethical norms.

Researchers are teaching robots to walk on Mars from the sand of New Mexico

  02 Sep 2025
Researchers are closer to equipping a dog-like robot to conduct science on the surface of Mars

Engineering fantasy into reality

  26 Aug 2025
PhD student Erik Ballesteros is building “Doc Ock” arms for future astronauts.

RoboCup@Work League: Interview with Christoph Steup

and   22 Aug 2025
Find out more about the RoboCup League focussed on industrial production systems.

Interview with Haimin Hu: Game-theoretic integration of safety, interaction and learning for human-centered autonomy

and   21 Aug 2025
Hear from Haimin in the latest in our series featuring the 2025 AAAI / ACM SIGAI Doctoral Consortium participants.

AIhub coffee corner: Agentic AI

  15 Aug 2025
The AIhub coffee corner captures the musings of AI experts over a short conversation.

Interview with Kate Candon: Leveraging explicit and implicit feedback in human-robot interactions

and   25 Jul 2025
Hear from PhD student Kate about her work on human-robot interactions.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence