Ingredients for autonomous construction

28 May 2012

share this:

Most research in robotics focuses on a specific problem: building better hardware, implementing new algorithms, or demonstrating a new task. Combining all these state-of-the-art ingredients into a single system is the key to making autonomous robots capable of performing useful work in realistic environments. With this in mind, Stéphane Magnenat walks us through all the steps needed to perform autonomous construction using the marXbot in the video below. To make the task challenging, the building blocks from which robots build towers are distributed throughout the environment, which is riddled with ditches that can only be overcome by using these same building blocks as bridges. Because there are few building blocks, the robot has to figure out how to move the blocks in an near-to-optimal way so that it can navigate the environment while still building the tower. Furthermore, the robot does not have any information about its environment beforehand and can only use limited computational resources, as is often the case in realistic robot scenarios.

Solving this challenge requires an integrated system architecture (see figure below) that leverages modern algorithms and representations. The architecture is implemented using ASEBA, which is an open-source control architecture for microcontrollers. The low-level implements reactive behaviors such as avoiding obstacles and ditches or grasping objects. The high-level instead takes care of mapping the environment (using a version of FastSLAM), path-planning and reasoning.

The authors hope that such an integrated approach could help shed light on the capabilities required for intelligent physical interaction with the real world.

tags: , ,

Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory

Related posts :

Robo-Insight #5

In this fifth edition, we are excited to feature robot progress in human-robot interaction, agile movement, enhanced training methods, soft robotics, brain surgery, medical navigation, and ecological research. 
25 September 2023, by

Soft robotic tool provides new ‘eyes’ in endovascular surgery

The magnetic device can help visualise and navigate complex and narrow spaces.

‘Brainless’ robot can navigate complex obstacles

Researchers who created a soft robot that could navigate simple mazes without human or computer direction have now built on that work, creating a “brainless” soft robot that can navigate more complex and dynamic environments.
21 September 2023, by

Battery-free origami microfliers from UW researchers offer a new bio-inspired future of flying machines

Researchers at the University of Washington present battery-free microfliers that can change shape in mid-air to vary their dispersal distance.

Virtual-reality tech is fast becoming more real

Touch sensations are improving to help sectors like healthcare and manufacturing, while other advances are being driven by the gaming industry.
16 September 2023, by

High-tech microscope with ML software for detecting malaria in returning travellers

Method not as accurate as human experts, but shows promise.
14 September 2023, by and

©2021 - ROBOTS Association


©2021 - ROBOTS Association