Robohub.org
 

Integrating path planning and robot control


by
07 March 2011



share this:

There is often a conflict between planning the path a robot should take to achieve a desired task (high-level control) and the motion control needed for the robot to follow this path (low-level control). The problem is that if you decouple the path planning from the robot control, you might end up with paths that are impossible for the robot to follow because of physical constraints. Fully coupling the high-level and low-level control would solve this problem, although such intricate controllers are typically difficult to design.

To solve these shortcomings, Conner et al. propose a hybrid control strategy that combines low-level and high-level control in a smart way. As a test case, they consider a scenario where a robot needs to reach a goal while avoiding obstacles. The robot has a non-trivial body shape and is nonholonomic, meaning that it can not turn on the spot. The approach they developed is shown in the figure below. Local control policies, showed by fennel-shapped sets with vector field arrows, are responsible for making the robot drive towards a local goal. These policies respect the low-level dynamics and kinematics of the robot. A set of control policies can then be followed sequentially to reach a desired high-level behavior. To find the best path, an abstract tree representing the transitions between control policies is used.

Experiments were done with a LAGR robot in a fully known environment and with visual localization using landmarks. Results show that the method is successful in safely guiding the nonholonomic robot to its goal in an obstacle prone environment and that disturbances do not require the robot to replan its course.




Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :



Robots to the rescue: miniature robots offer new hope for search and rescue operations

  09 Sep 2025
Small two-wheeled robots, equipped with high-tech sensors, will help to find survivors faster in the aftermath of disasters.

#IJCAI2025 distinguished paper: Combining MORL with restraining bolts to learn normative behaviour

and   04 Sep 2025
The authors introduce a framework for guiding reinforcement learning agents to comply with social, legal, and ethical norms.

Researchers are teaching robots to walk on Mars from the sand of New Mexico

  02 Sep 2025
Researchers are closer to equipping a dog-like robot to conduct science on the surface of Mars

Engineering fantasy into reality

  26 Aug 2025
PhD student Erik Ballesteros is building “Doc Ock” arms for future astronauts.

RoboCup@Work League: Interview with Christoph Steup

and   22 Aug 2025
Find out more about the RoboCup League focussed on industrial production systems.

Interview with Haimin Hu: Game-theoretic integration of safety, interaction and learning for human-centered autonomy

and   21 Aug 2025
Hear from Haimin in the latest in our series featuring the 2025 AAAI / ACM SIGAI Doctoral Consortium participants.

AIhub coffee corner: Agentic AI

  15 Aug 2025
The AIhub coffee corner captures the musings of AI experts over a short conversation.

Interview with Kate Candon: Leveraging explicit and implicit feedback in human-robot interactions

and   25 Jul 2025
Hear from PhD student Kate about her work on human-robot interactions.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence