Robohub.org
 

Integrating path planning and robot control


by
07 March 2011



share this:

There is often a conflict between planning the path a robot should take to achieve a desired task (high-level control) and the motion control needed for the robot to follow this path (low-level control). The problem is that if you decouple the path planning from the robot control, you might end up with paths that are impossible for the robot to follow because of physical constraints. Fully coupling the high-level and low-level control would solve this problem, although such intricate controllers are typically difficult to design.

To solve these shortcomings, Conner et al. propose a hybrid control strategy that combines low-level and high-level control in a smart way. As a test case, they consider a scenario where a robot needs to reach a goal while avoiding obstacles. The robot has a non-trivial body shape and is nonholonomic, meaning that it can not turn on the spot. The approach they developed is shown in the figure below. Local control policies, showed by fennel-shapped sets with vector field arrows, are responsible for making the robot drive towards a local goal. These policies respect the low-level dynamics and kinematics of the robot. A set of control policies can then be followed sequentially to reach a desired high-level behavior. To find the best path, an abstract tree representing the transitions between control policies is used.

Experiments were done with a LAGR robot in a fully known environment and with visual localization using landmarks. Results show that the method is successful in safely guiding the nonholonomic robot to its goal in an obstacle prone environment and that disturbances do not require the robot to replan its course.




Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :



Robot Talk Episode 126 – Why are we building humanoid robots?

  20 Jun 2025
In this special live recording at Imperial College London, Claire chatted to Ben Russell, Maryam Banitalebi Dehkordi, and Petar Kormushev about humanoid robotics.

Gearing up for RoboCupJunior: Interview with Ana Patrícia Magalhães

and   18 Jun 2025
We hear from the organiser of RoboCupJunior 2025 and find out how the preparations are going for the event.

Robot Talk Episode 125 – Chatting with robots, with Gabriel Skantze

  13 Jun 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Gabriel Skantze from KTH Royal Institute of Technology about having natural face-to-face conversations with robots.

Preparing for kick-off at RoboCup2025: an interview with General Chair Marco Simões

and   12 Jun 2025
We caught up with Marco to find out what exciting events are in store at this year's RoboCup.

Interview with Amar Halilovic: Explainable AI for robotics

  10 Jun 2025
Find out about Amar's research investigating the generation of explanations for robot actions.

Robot Talk Episode 124 – Robots in the performing arts, with Amy LaViers

  06 Jun 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Amy LaViers from the Robotics, Automation, and Dance Lab about the creative relationship between humans and machines.

Robot Talk Episode 123 – Standardising robot programming, with Nick Thompson

  30 May 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Nick Thompson from BOW about software that makes robots easier to program.

Congratulations to the #AAMAS2025 best paper, best demo, and distinguished dissertation award winners

  29 May 2025
Find out who won the awards presented at the International Conference on Autonomous Agents and Multiagent Systems last week.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2025.05 - Association for the Understanding of Artificial Intelligence


 












©2025.05 - Association for the Understanding of Artificial Intelligence