Robohub.org
 

Learning behavioral models

by
21 December 2010



share this:

It is often difficult to predict the high-level behavior of a robot given low-level models about sensors, actuators and controllers. You might know your robot will turn in response to obstacles but not how it will behave in a room full of people.

Modeling the global behavior of a robot is useful in order to predict how the robot behaves in different environments. Furthermore, once a good model is inferred, it can be used to improve the robot’s controller parameters online.

To model robot behaviors, Infantes et al. use a probabilistic representation called Dynamic Bayesian Networks. The approach is tested using the Rackham RWI B21R museum guide robot shown below that needs to navigate in an open environment with people. The network captures information concerning the robot’s parameters, environment variables, robot state variables and mission variables. The model is then used to optimize the robot behavior for a given environment. During the learning process, robots are rewarded for good behaviors that avoid failures, go fast and are “human-friendly”. Using this approach, the robot fails less, is faster and has better human acceptance than a robot with hand-tuned parameters.

In the future, Infantes et al. plan to use this approach to learn other robotic tasks such as grasping or interacting with humans.




Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :



ep.

352

podcast

Robotics Grasping and Manipulation Competition Spotlight, with Yu Sun

Yu Sun, previous chair of the Robotics Grasping and Manipulation Competition, speaks on the value that this competition brought to the robotics community.
21 May 2022, by
ep.

351

podcast

Early Days of ICRA Competitions, with Bill Smart

Bill Smart, one fo the early ICRA Competition Chairs, dives into the high-level decisions involved with creating a meaningful competition.
21 May 2022, by

New imaging method makes tiny robots visible in the body

Microrobots have the potential to revolutionize medicine. Researchers at the Max Planck ETH Centre for Learning Systems have now developed an imaging technique that for the first time recognises cell-​sized microrobots individually and at high resolution in a living organism.
20 May 2022, by

A draft open standard for an Ethical Black Box

Within the RoboTIPS project, we have developed and tested several model of Ethical Black Boxes, including one for an e-puck robot, and another for the MIRO robot.
19 May 2022, by

Unable to attend #ICRA2022 for accessibility issues? Or just curious to see robots?

There are many things that can make it difficult to attend an in person conference in the United States and so the ICRA Organizing Committee, the IEEE Robotics and Automation Society and OhmniLabs would like to help you attend ICRA virtually.
17 May 2022, by
ep.

350

podcast

Duckietown Competition Spotlight, with Dr Liam Paull

Dr. Liam Paull, cofounder of the Duckietown competition talks about the only robotics competition where Rubber Duckies are the passengers on an autonomous driving track.
17 May 2022, by





©2021 - ROBOTS Association


 












©2021 - ROBOTS Association