Robohub.org
 

Learning tasks across different environments

by
27 July 2010



share this:

In the future, robots will be expected to learn a task and execute it in a variety of realistic situations. Reinforcement-learning and planning algorithms are exactly intended for that purpose. However, one of the main challenges is to make sure actions learned in one environment can be used in new and unforeseen situations in real time.

To address this challenge, Stolle et al. have imagined a series of algorithms which they demonstrate on complex tasks such as solving a marble maze or making Boston Dynamic’s Little Dog navigate over complex terrain (see video below).

The first ingredient of success relies on making robots learn what action to take based on local features, meaning features as viewed by the robot (e.g. “there is a wall to the right”). These local features can then be recognized in new environments when the robot is in similar situations. Instead, many existing algorithms use global information, for example by saying “perform this action in position (x,y,z)”. Changing the environment however would typically make these global policies useless.

The second ingredient makes robots build libraries containing sequences of actions (trajectories) that can bring a robot from its current state to an aimed goal. Robots then apply the actions from the trajectory nearest to their state to achieve a task. This strategy is interesting because it is not computationally expensive and does not require large amounts of fast memory.

Finally, don’t miss the following video of little-dog climbing over a fence. This special purpose behavior can be used in a variety of situations.




Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :



We are pleased to announce our 3rd Reddit Robotics Showcase!

The 2021 and 2022 events showcased a multitude of fantastic projects from the r/Robotics Reddit community, as well as academia and industry. This year’s event features many wonderful robots including...
30 May 2023, by

European Robotics Forum 2023 was a success!

One of the highlights of the conference for us was our workshop "Supporting SMEs in Bringing Robotics Solutions to Market", where experts gave insights on how DIHs can create a greater impact for SMEs and facilitate a broad uptake and integration of robotics technologies in the industry.
28 May 2023, by

Helping robots handle fluids

Researchers create a new simulation tool for robots to manipulate complex fluids in a step toward helping them more effortlessly assist with daily tasks.
27 May 2023, by

Robot Talk Episode 50 – Elena De Momi

In this week's episode of the Robot Talk podcast, host Claire Asher chatted to Elena De Momi from the the Polytechnic University of Milan all about surgical robotics, artificial intelligence, and the upcoming ICRA robotics conference in London.
26 May 2023, by

Building a Tablebot

There was a shortage of entries in the tablebot competition shortly before the registration window closed for RoboGames 2023. To make sure the contest would be held, I entered a robot. Then I had to build one.
23 May 2023, by

Making drones suitable for cities

Unmanned aerial vehicles will make their way into urban skies only if the safety of people below can be ensured.
21 May 2023, by





©2021 - ROBOTS Association


 












©2021 - ROBOTS Association