Learning tasks across different environments

27 July 2010

share this:

In the future, robots will be expected to learn a task and execute it in a variety of realistic situations. Reinforcement-learning and planning algorithms are exactly intended for that purpose. However, one of the main challenges is to make sure actions learned in one environment can be used in new and unforeseen situations in real time.

To address this challenge, Stolle et al. have imagined a series of algorithms which they demonstrate on complex tasks such as solving a marble maze or making Boston Dynamic’s Little Dog navigate over complex terrain (see video below).

The first ingredient of success relies on making robots learn what action to take based on local features, meaning features as viewed by the robot (e.g. “there is a wall to the right”). These local features can then be recognized in new environments when the robot is in similar situations. Instead, many existing algorithms use global information, for example by saying “perform this action in position (x,y,z)”. Changing the environment however would typically make these global policies useless.

The second ingredient makes robots build libraries containing sequences of actions (trajectories) that can bring a robot from its current state to an aimed goal. Robots then apply the actions from the trajectory nearest to their state to achieve a task. This strategy is interesting because it is not computationally expensive and does not require large amounts of fast memory.

Finally, don’t miss the following video of little-dog climbing over a fence. This special purpose behavior can be used in a variety of situations.

Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory

Related posts :

Robot Talk Episode 35 – Interview with Emily S. Cross

In this week's episode of the Robot Talk podcast, host Claire Asher chatted to Professor Emily S. Cross from the University of Glasgow and Western Sydney University all about neuroscience, social learning, and human-robot interaction.
03 February 2023, by

Sea creatures inspire marine robots which can operate in extra-terrestrial oceans

Scientists at the University of Bristol have drawn on the design and life of a mysterious zooplankton to develop underwater robots.
02 February 2023, by

Our future could be full of undying, self-repairing robots – here’s how

Could it be that future AI systems will need robotic “bodies” to interact with the world? If so, will nightmarish ideas like the self-repairing, shape-shifting T-1000 robot from the Terminator 2 movie come to fruition? And could a robot be created that could “live” forever?
01 February 2023, by

Sensing with purpose

Fadel Adib uses wireless technologies to sense the world in new ways, taking aim at sweeping problems such as food insecurity, climate change, and access to health care.
29 January 2023, by

Robot Talk Episode 34 – Interview with Sabine Hauert

In this week's episode of the Robot Talk podcast, host Claire Asher chatted to Dr Sabine Hauert from the University of Bristol all about swarm robotics, nanorobots, and environmental monitoring.
28 January 2023, by

Special drone collects environmental DNA from trees

Researchers at ETH Zurich and the Swiss Federal research institute WSL have developed a flying device that can land on tree branches to take samples. This opens up a new dimension for scientists previously reserved for biodiversity researchers.
27 January 2023, by

©2021 - ROBOTS Association


©2021 - ROBOTS Association