Robohub.org
 

Local visual homing

by
24 August 2010



share this:

How can a robot, using vision, go back to a previously visited location?

Möller et al. look at this research question, tagged “Local Visual Homing” in an intuitive manner inspired from social insects returning to their nest. The idea is that a robot, when somewhere important, takes a snapshot of the surrounding visual information. To return to that location later on (homing), it compares its current view of the world with the stored snapshot.

A technique called “image warping” is used to guide the robot to the snapshot location. Simply put, the robot imagines all possible movements it can do and simulates their effect on its current view of the world. It then selects the action that would bring its view closest to the stored snapshot. The outcome of this method is a homing vector that the robot should follow and a measure of how much its orientation has changed.

Using three different implementations of image warping, Möller et al. show how a robot equipped with a panoramic camera could effectively home with reasonable computational effort. Experiments were conducted on a database of real-world images taken by a robot (see example images below).

In the future, robots could use visual homing to go from snapshot to snapshot, thereby navigating through large environments.

Finally, don’t miss the author’s website for an extensive overview of visual navigation techniques.



tags:


Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :



Robot Talk Episode 55 – Sara Adela Abad Guaman

In the first episode of the new season, Claire chatted to Dr. Sara Adela Abad Guaman from University College London about adaptable robots inspired by nature.
30 September 2023, by

A short guide to Multidisciplinary Research

How and Why would I consider colliding two opposite disciplines in my research.
27 September 2023, by

Robo-Insight #5

In this fifth edition, we are excited to feature robot progress in human-robot interaction, agile movement, enhanced training methods, soft robotics, brain surgery, medical navigation, and ecological research. 
25 September 2023, by

Soft robotic tool provides new ‘eyes’ in endovascular surgery

The magnetic device can help visualise and navigate complex and narrow spaces.

‘Brainless’ robot can navigate complex obstacles

Researchers who created a soft robot that could navigate simple mazes without human or computer direction have now built on that work, creating a “brainless” soft robot that can navigate more complex and dynamic environments.
21 September 2023, by

Battery-free origami microfliers from UW researchers offer a new bio-inspired future of flying machines

Researchers at the University of Washington present battery-free microfliers that can change shape in mid-air to vary their dispersal distance.





©2021 - ROBOTS Association


 












©2021 - ROBOTS Association