Robohub.org
 

MimicEducationalRobots teach robotics for the future


by
24 April 2022



share this:

The robotics industry is changing. The days of industrial robot arms working behind enclosures, performing pre-programmed identical tasks are coming to an end. Robots that can interact with each other and other equipment are becoming standard and robots are expanding to more aspects of our lives. My name is Brett Pipitone, and I am the founder, CEO, and sole employee of mimicEducationalRobots. I believe that robots will soon become an inescapable part of modern life, and I seek to prepare today’s students to work with these emerging technologies.

The mimicEducationalRobots product line consists of a family of three robots. The largest and most sophisticated is mimicArm. The adorable tinyBot is small and capable. The newest robot, bitsyBot (currently on Kickstarter) is perfect for those taking the first steps into the robotics world. Despite having different features, all three robots are designed to communicate with each other and use special sensors to make decisions about their environment. Interfaces are simple but powerful, allowing users to learn quickly and without frustration.

mimicEducationalRobots believes that every student will encounter robots in their everyday life, no matter their career path. Learning robotics allows students to become comfortable and familiar with technology that is rapidly becoming commonplace in day-to-day life. Through their combinations of features, the mimicEducationalRobots products introduce technology that’s still in its infancy, such as human/robot interaction and cooperative robotics, at a level students can understand. This is why every mimicEducationalRobots robot starts with manual control, allowing students to get the feel of their robot and what it can and can’t do. Once they’ve mastered manual control programming is a smaller leap. The mimicEducationalRobots programming software simplifies this transition by reflecting the same motions the students have been making manually with simple commands like “robotMove” and “robotGrab”.

For more complex programs, mimicEducationalRobots believes that their robots should mimic industry as closely as possible. This means doing as much as possible with the simplest possible sensor. Things start small, with a great big tempting pushable button called, incidentally, “greatBigButton”. This is the students’ first introduction to human interaction as they program their robot to react to a button press. From there things get much more exciting without getting very much more complicated. For example, an array of non-contact IR thermometers called Grid-EYE allows mimicArm to detect faces using nothing but body heat. A simple IR proximity sensor allows tinyBot or bitsyBot to react when offered a block before the block touches any part of the robot. There’s even a cable that allows robots to communicate with each other and react to what the other is doing. These simple capabilities allow students to create a wide range of robotic behaviors.

mimicEducationalRobots is a homegrown business designed and built by an engineer and dad passionate about teaching people of all ages about robotics. I created the robots’ brains using a bare circuit board, template, some solder paste, and tweezers. Every component is added by hand and the board is soldered together with a toaster oven I modified. Once cooled the boards are programmed using a modified Arduino UNO R3, one of the best technological tools for beginners.

Other physical robot parts are designed using 3D modeling software and made either on a 3D printer or CNC router. I have two 3D printers in his basement running 24 hours a day, producing at least 20 robot kits a week. The CNC router requires a great deal more supervision but is capable of turning out four sets of beautiful neon plastic parts every 30 minutes.

mimicEducationalRobots is a new kind of company, producing a new kind of product, for a new kind of consumer. Their products demonstrate just how fundamental technology, and in particular open source technology, has changed our world. I hope students learning on mimicArm, tinyBot, or bitsyBot will help create the next life-changing technological leap.

To learn more about the family of mimicEducationalRobots visit www.mimicRobots.com



tags:


Brett Pipitone is the Founder of mimicEducationalRobots.
Brett Pipitone is the Founder of mimicEducationalRobots.





Related posts :

“Robot, make me a chair”

  17 Feb 2026
An AI-driven system lets users design and build simple, multicomponent objects by describing them with words.

Robot Talk Episode 144 – Robot trust in humans, with Samuele Vinanzi

  13 Feb 2026
In the latest episode of the Robot Talk podcast, Claire chatted to Samuele Vinanzi from Sheffield Hallam University about how robots can tell whether to trust or distrust people.

How can robots acquire skills through interactions with the physical world? An interview with Jiaheng Hu

and   12 Feb 2026
Find out more about work published at the Conference on Robot Learning (CoRL).

Sven Koenig wins the 2026 ACM/SIGAI Autonomous Agents Research Award

  10 Feb 2026
Sven honoured for his work on AI planning and search.

Robot Talk Episode 143 – Robots for children, with Elmira Yadollahi

  06 Feb 2026
In the latest episode of the Robot Talk podcast, Claire chatted to Elmira Yadollahi from Lancaster University about how children interact with and relate to robots.

New frontiers in robotics at CES 2026

  03 Feb 2026
Henry Hickson reports on the exciting developments in robotics at Consumer Electronics Show 2026.

Robot Talk Episode 142 – Collaborative robot arms, with Mark Gray

  30 Jan 2026
In the latest episode of the Robot Talk podcast, Claire chatted to Mark Gray from Universal Robots about their lightweight robotic arms that work alongside humans.

Robot Talk Episode 141 – Our relationship with robot swarms, with Razanne Abu-Aisheh

  23 Jan 2026
In the latest episode of the Robot Talk podcast, Claire chatted to Razanne Abu-Aisheh from the University of Bristol about how people feel about interacting with robot swarms.


Robohub is supported by:





 













©2026.01 - Association for the Understanding of Artificial Intelligence