Robohub.org
 

Mobile robots get a leg up from a more-is-better communications principle

by
19 August 2023



share this:

Getting a leg up from mobile robots comes down to getting a bunch of legs. Georgia Institute of Technology

By Baxi Chong (Postdoctoral Fellow, School of Physics, Georgia Institute of Technology)

Adding legs to robots that have minimal awareness of the environment around them can help the robots operate more effectively in difficult terrain, my colleagues and I found.

We were inspired by mathematician and engineer Claude Shannon’s communication theory about how to transmit signals over distance. Instead of spending a huge amount of money to build the perfect wire, Shannon illustrated that it is good enough to use redundancy to reliably convey information over noisy communication channels. We wondered if we could do the same thing for transporting cargo via robots. That is, if we want to transport cargo over “noisy” terrain, say fallen trees and large rocks, in a reasonable amount of time, could we do it by just adding legs to the robot carrying the cargo and do so without sensors and cameras on the robot?

Most mobile robots use inertial sensors to gain an awareness of how they are moving through space. Our key idea is to forget about inertia and replace it with the simple function of repeatedly making steps. In doing so, our theoretical analysis confirms our hypothesis of reliable and predictable robot locomotion – and hence cargo transport – without additional sensing and control.

To verify our hypothesis, we built robots inspired by centipedes. We discovered that the more legs we added, the better the robot could move across uneven surfaces without any additional sensing or control technology. Specifically, we conducted a series of experiments where we built terrain to mimic an inconsistent natural environment. We evaluated the robot locomotion performance by gradually increasing the number of legs in increments of two, beginning with six legs and eventually reaching a total of 16 legs.

Navigating rough terrain can be as simple as taking it a step at a time, at least if you have a lot of legs.

As the number of legs increased, we observed that the robot exhibited enhanced agility in traversing the terrain, even in the absence of sensors. To further assess its capabilities, we conducted outdoor tests on real terrain to evaluate its performance in more realistic conditions, where it performed just as well. There is potential to use many-legged robots for agriculture, space exploration and search and rescue.

Why it matters

Transporting things – food, fuel, building materials, medical supplies – is essential to modern societies, and effective goods exchange is the cornerstone of commercial activity. For centuries, transporting material on land has required building roads and tracks. However, roads and tracks are not available everywhere. Places such as hilly countryside have had limited access to cargo. Robots might be a way to transport payloads in these regions.

What other research is being done in this field

Other researchers have been developing humanoid robots and robot dogs, which have become increasingly agile in recent years. These robots rely on accurate sensors to know where they are and what is in front of them, and then make decisions on how to navigate.

However, their strong dependence on environmental awareness limits them in unpredictable environments. For example, in search-and-rescue tasks, sensors can be damaged and environments can change.

What’s next

My colleagues and I have taken valuable insights from our research and applied them to the field of crop farming. We have founded a company that uses these robots to efficiently weed farmland. As we continue to advance this technology, we are focused on refining the robot’s design and functionality.

While we understand the functional aspects of the centipede robot framework, our ongoing efforts are aimed at determining the optimal number of legs required for motion without relying on external sensing. Our goal is to strike a balance between cost-effectiveness and retaining the benefits of the system. Currently, we have shown that 12 is the minimum number of legs for these robots to be effective, but we are still investigating the ideal number.


The Research Brief is a short take on interesting academic work.

The Conversation

The authors has received funding from NSF-Simons Southeast Center for Mathematics and Biology (Simons Foundation SFARI 594594), Georgia Research Alliance (GRA.VL22.B12), Army Research Office (ARO) MURI program, Army Research Office Grant W911NF-11-1-0514 and a Dunn Family Professorship.

The author and his colleagues have one or more pending patent applications related to the research covered in this article.

The author and his colleagues have established a start-up company, Ground Control Robotics, Inc., partially based on this work.

This article is republished from The Conversation under a Creative Commons license. Read the original article.




The Conversation is an independent source of news and views, sourced from the academic and research community and delivered direct to the public.
The Conversation is an independent source of news and views, sourced from the academic and research community and delivered direct to the public.





Related posts :



Octopus inspires new suction mechanism for robots

Suction cup grasping a stone - Image credit: Tianqi Yue The team, based at Bristol Robotics Laboratory, studied the structures of octopus biological suckers,  which have superb adaptive s...
18 April 2024, by

Open Robotics Launches the Open Source Robotics Alliance

The Open Source Robotics Foundation (OSRF) is pleased to announce the creation of the Open Source Robotics Alliance (OSRA), a new initiative to strengthen the governance of our open-source robotics so...

Robot Talk Episode 77 – Patricia Shaw

In the latest episode of the Robot Talk podcast, Claire chatted to Patricia Shaw from Aberystwyth University all about home assistance robots, and robot learning and development.
18 March 2024, by

Robot Talk Episode 64 – Rav Chunilal

In the latest episode of the Robot Talk podcast, Claire chatted to Rav Chunilal from Sellafield all about robotics and AI for nuclear decommissioning.
31 December 2023, by

AI holidays 2023

Thanks to those that sent and suggested AI and robotics-themed holiday videos, images, and stories. Here’s a sample to get you into the spirit this season....
31 December 2023, by and

Faced with dwindling bee colonies, scientists are arming queens with robots and smart hives

By Farshad Arvin, Martin Stefanec, and Tomas Krajnik Be it the news or the dwindling number of creatures hitting your windscreens, it will not have evaded you that the insect world in bad shape. ...
31 December 2023, by





Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association