Robohub.org
 

Naomi Ehrich Leonard: Bio-inspired dynamics for multi-agent decision-making | CMU RI Seminar

by
04 March 2018



share this:

Link to video on YouTube

Abstract: “I will present distributed decision-making dynamics for multi-agent systems, motivated by studies of animal groups, such as house-hunting honeybees, and their extraordinary ability to make collective decisions that are both robust to disturbance and adaptable to change. The dynamics derive from principles of symmetry, consensus, and bifurcation in networked systems, exploiting instability as a means to flexibly transition from one stable solution to another. Feedback dynamics are derived for the bifurcation control, a variable representing social effort, such that flexible transition is made a controlled adaptive response.”




John Payne





Related posts :



Soft robotic tool provides new ‘eyes’ in endovascular surgery

The magnetic device can help visualise and navigate complex and narrow spaces.

‘Brainless’ robot can navigate complex obstacles

Researchers who created a soft robot that could navigate simple mazes without human or computer direction have now built on that work, creating a “brainless” soft robot that can navigate more complex and dynamic environments.
21 September 2023, by

Battery-free origami microfliers from UW researchers offer a new bio-inspired future of flying machines

Researchers at the University of Washington present battery-free microfliers that can change shape in mid-air to vary their dispersal distance.

Virtual-reality tech is fast becoming more real

Touch sensations are improving to help sectors like healthcare and manufacturing, while other advances are being driven by the gaming industry.
16 September 2023, by

High-tech microscope with ML software for detecting malaria in returning travellers

Method not as accurate as human experts, but shows promise.
14 September 2023, by and

How drones are used during earthquakes

Drones are being used by responders in the terrible Morocco earthquake.
13 September 2023, by and





©2021 - ROBOTS Association


 












©2021 - ROBOTS Association