Robohub.org
 

NASA 3D prints rocket injector, initial tests successful | NASA News


by
29 August 2014



share this:
NASA_3D_printed_Rocket_injector
Engineers just completed hot-fire testing with two 3-D printed rocket injectors. Certain features of the rocket components were designed to increase rocket engine performance. The injector mixed liquid oxygen and gaseous hydrogen together, which combusted at temperatures over 6,000 degrees Fahrenheit, producing more than 20,000 pounds of thrust. Image Credit: NASA photo/David Olive

According to a press release issued today:

NASA has successfully tested the most complex rocket engine parts ever designed by the agency and printed with additive manufacturing, or 3-D printing, on a test stand at NASA’s Marshall Space Flight Center in Huntsville, Alabama. NASA engineers pushed the limits of technology by designing a rocket engine injector –a highly complex part that sends propellant into the engine — with design features that took advantage of 3-D printing. To make the parts, the design was entered into the 3-D printer’s computer. The printer then built each part by layering metal powder and fusing it together with a laser, a process known as selective laser melting. The additive manufacturing process allowed rocket designers to create an injector with 40 individual spray elements, all printed as a single component rather than manufactured individually. The part was similar in size to injectors that power small rocket engines and similar in design to injectors for large engines, such as the RS-25 engine that will power NASA’s Space Launch System (SLS) rocket, the heavy-lift, exploration class rocket under development to take humans beyond Earth orbit and to Mars.

3-D Printed Rocket Injector Roars to Life: The most complex 3-D printed rocket injector ever built by NASA roars to life on the test stand at NASA’s Marshall Space Flight Center in Huntsville, Alabama.

“We wanted to go a step beyond just testing an injector and demonstrate how 3-D printing could revolutionize rocket designs for increased system performance,” said Chris Singer, director of Marshall’s Engineering Directorate. “The parts performed exceptionally well during the tests.”

Using traditional manufacturing methods, 163 individual parts would be made and then assembled. But with 3-D printing technology, only two parts were required, saving time and money and allowing engineers to build parts that enhance rocket engine performance and are less prone to failure.

Two rocket injectors were tested for five seconds each, producing 20,000 pounds of thrust. Designers created complex geometric flow patterns that allowed oxygen and hydrogen to swirl together before combusting at 1,400 pounds per square inch and temperatures up to 6,000 degrees Fahrenheit. NASA engineers used this opportunity to work with two separate companies — Solid Concepts in Valencia, California, and Directed Manufacturing in Austin, Texas. Each company printed one injector.

“One of our goals is to collaborate with a variety of companies and establish standards for this new manufacturing process,” explained Marshall propulsion engineer Jason Turpin. “We are working with industry to learn how to take advantage of additive manufacturing in every stage of space hardware construction from design to operations in space. We are applying everything we learn about making rocket engine components to the Space Launch System and other space hardware.”

Additive manufacturing not only helped engineers build and test a rocket injector with a unique design, but it also enabled them to test faster and smarter. Using Marshall’s in-house capability to design and produce small 3-D printed parts quickly, the propulsion and materials laboratories can work together to apply quick modifications to the test stand or the rocket component.

“Having an in-house additive manufacturing capability allows us to look at test data, modify parts or the test stand based on the data, implement changes quickly and get back to testing,” said Nicholas Case, a propulsion engineer leading the testing. “This speeds up the whole design, development and testing process and allows us to try innovative designs with less risk and cost to projects.”

Marshall engineers have tested increasingly complex injectors, rocket nozzles and other components with the goal of reducing the manufacturing complexity and the time and cost of building and assembling future engines. Additive manufacturing is a key technology for enhancing rocket designs and enabling missions into deep space.



tags: , , ,


Hallie Siegel robotics editor-at-large
Hallie Siegel robotics editor-at-large





Related posts :



Robot Talk Episode 119 – Robotics for small manufacturers, with Will Kinghorn

  02 May 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Will Kinghorn from Made Smarter about how to increase adoption of new tech by small manufacturers.

Multi-agent path finding in continuous environments

  01 May 2025
How can a group of agents minimise their journey length whilst avoiding collisions?

Interview with Yuki Mitsufuji: Improving AI image generation

  29 Apr 2025
Find out about two pieces of research tackling different aspects of image generation.

Robot Talk Episode 118 – Soft robotics and electronic skin, with Miranda Lowther

  25 Apr 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Miranda Lowther from the University of Bristol about soft, sensitive electronic skin for prosthetic limbs.

Interview with Amina Mević: Machine learning applied to semiconductor manufacturing

  17 Apr 2025
Find out how Amina is using machine learning to develop an explainable multi-output virtual metrology system.

Robot Talk Episode 117 – Robots in orbit, with Jeremy Hadall

  11 Apr 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Jeremy Hadall from the Satellite Applications Catapult about robotic systems for in-orbit servicing, assembly, and manufacturing.

Robot Talk Episode 116 – Evolved behaviour for robot teams, with Tanja Kaiser

  04 Apr 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Tanja Katharina Kaiser from the University of Technology Nuremberg about how applying evolutionary principles can help robot teams make better decisions.

AI can be a powerful tool for scientists. But it can also fuel research misconduct

  31 Mar 2025
While AI is allowing scientists to make technological breakthroughs, there’s also a darker side to the use of AI in science: scientific misconduct is on the rise.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2025.05 - Association for the Understanding of Artificial Intelligence


 












©2025.05 - Association for the Understanding of Artificial Intelligence