Robohub.org
 

New study uses robots to uncover the connections between the human mind and walking control

by
13 April 2020



share this:

Using a robot to disrupt the gait cycle of participants, researchers discovered that feedforward mechanisms controlled by the cerebellum and feedback mechanisms controlled at the spinal level determine how the nervous system responds to robot-induced changes in step length. Credit: Wyss Institute at Harvard University


By Tim Sullivan, Spaulding Rehabilitation Network Communications

Many of us aren’t spending much time outside lately, but there are still many obstacles for us to navigate as we walk around: the edge of the coffee table, small children, the family dog. How do our brains adjust to changes in our walking strides? Researchers at the Wyss Institute for Biologically Inspired Engineering at Harvard University and the Motion Analysis Laboratory at Spaulding Rehabilitation Hospital used robots to try to answer that question, and discovered that mechanisms in both the cerebellum and the spinal cord determine how the nervous system responds to robot-induced changes in step length. The new study is published in the latest issue of Scientific Reports, and points the way toward improving robot-based physical rehabilitation programs for patients.

New Study Uses Robots to Uncover the Connections Between the Human Mind and Walking Control
Using a robot to disrupt the gait cycle of participants, researchers discovered that feedforward mechanisms controlled by the cerebellum and feedback mechanisms controlled at the spinal level determine how the nervous system responds to robot-induced changes in step length. Credit: Wyss Institute at Harvard University

“Our understanding of the neural mechanisms underlying locomotor adaptation is still limited. Specifically, how behavioral, functional, and physiological processes work in concert to achieve adaptation during locomotion has remained elusive to date,” said Paolo Bonato, Ph.D., an Associate Faculty member of the Wyss Institute and Director of the Spaulding Motion Analysis Lab who led the study. “Our goal is to create a better understanding of this process and hence develop more effective clinical interventions.”

For the study, the team used a robot to induce two opposite unilateral mechanical perturbations to human subjects as they were walking that affected their step length over multiple gait cycles. Electrical signals recorded from muscles were collected and analyzed to determine how muscle synergies (the activation of a group of muscles to create a specific movement) change in response to perturbation. The results revealed a combination of feedforward control signals coming from the cerebellum and feedback-driven control signals arising in the spinal cord during adaptation. The relative side-specific contributions of the two processes to motor-output adjustments, however, depended on which type of perturbation was delivered. Overall, the observations provide evidence that, in humans, both descending and afferent drives project onto the same spinal interneuronal networks that encode locomotor muscle synergies.

Researchers study how our brains adjust to changes in our walking strides, gaining insights that could be used to develop better physical rehabilitation programs. Credit: Wyss Institute.

These results mirror previous observations from animal studies, strongly suggesting the presence of a defined population of spinal interneurons regulating muscle coordination that can be accessed by both cortical and afferent drives in humans. “Our team hopes to build on this work to develop new approaches to the design of robot-assisted gait rehabilitation procedures targeting specific descending- and afferent-driven responses in muscle synergies in the coming year,” said Bonato.




Wyss Institute uses Nature's design principles to develop bioinspired materials and devices that will transform medicine and create a more sustainable world.
Wyss Institute uses Nature's design principles to develop bioinspired materials and devices that will transform medicine and create a more sustainable world.





Related posts :



A draft open standard for an Ethical Black Box

Within the RoboTIPS project, we have developed and tested several model of Ethical Black Boxes, including one for an e-puck robot, and another for the MIRO robot.
19 May 2022, by

Unable to attend #ICRA2022 for accessibility issues? Or just curious to see robots?

There are many things that can make it difficult to attend an in person conference in the United States and so the ICRA Organizing Committee, the IEEE Robotics and Automation Society and OhmniLabs would like to help you attend ICRA virtually.
17 May 2022, by
ep.

350

podcast

Duckietown Competition Spotlight, with Dr Liam Paull

Dr. Liam Paull, cofounder of the Duckietown competition talks about the only robotics competition where Rubber Duckies are the passengers on an autonomous driving track.
17 May 2022, by

Designing societally beneficial Reinforcement Learning (RL) systems

In this post, we aim to illustrate the different modalities harms can take when augmented with the temporal axis of RL. To combat these novel societal risks, we also propose a new kind of documentation for dynamic Machine Learning systems which aims to assess and monitor these risks both before and after deployment.
15 May 2022, by

Innovative ‘smart socks’ could help millions living with dementia

‘Smart socks’ that track rising distress in the wearer could improve the wellbeing of millions of people with dementia, non-verbal autism and other conditions that affect communication.
13 May 2022, by

Swiss Robotics Day showcases innovations and collaborations between academia and industry

The 2021 Swiss Robotics Day marked the beginning of NCCR Robotics’s final year. The project, launched in 2010, is on track to meet all its scientific goals in the three areas of wearable, rescue and educational robotics, while continuing to focus on supporting spin-offs, advancing robotics education and improving equality of opportunities for all robotics researchers.
10 May 2022, by





©2021 - ROBOTS Association


 












©2021 - ROBOTS Association