news    views    podcast    learn    |    about    contribute     republish    

Peter K. Allen: Multi-Modal Geometric Learning for Grasping | CMU RI Seminar

curated by | December 1, 2018

Link to video on YouTube

Abstract: “In this talk, we will describe methods to enable robots to grasp novel objects using multi-modal data and machine. The starting point is an architecture to enable robotic grasp planning via shape completion using a single occluded depth view of objects. Shape completion is accomplished through the use of a 3D CNN. The network is trained on our open source dataset of over 440,000 3D exemplars captured from varying viewpoints. At runtime, a pointcloud captured from a single point of view is fed into the CNN, which fills in the occluded regions of the scene, allowing grasps to be planned and executed on the completed object, which extends to novel objects as well. We have extended this network to incorporate both depth and tactile information. Offline, the network is provided with both simulated depth and tactile information and trained to predict the object’s geometry, thus filling in regions of occlusion. At runtime, the network is provided a partial view of an object and exploratory tactile information is acquired to augment the captured depth information. We demonstrate that even small amounts of additional tactile information can be incredibly helpful in reasoning about object geometry. We also provide experimental results comparing grasping success using our method.”


comments powered by Disqus

Semantics in Robotics
February 18, 2019

Are you planning to crowdfund your robot startup?

Need help spreading the word?

Join the Robohub crowdfunding page and increase the visibility of your campaign