Robohub.org
 

Place recognition and localization with omnidirectional vision

by
09 May 2011



share this:

Let’s say you just purchased a new service robot and you want it to be able to know its way in your apartment. The obvious thing to do would be to show it around, going from room to room saying “this is the living room” and “this is the kitchen”. The robot, equipped with an omnidirectional camera, could then take pictures along the way while recording its location. This will build-up its visual memory of the apartment. The challenge for the robot next time around is to figure out in what room it is (place recognition) and where it is in this room (localization) based on its current view of the world.

This requires finding a good way to compare new images to the robot’s visual memory. The comparison needs to be robust to robot motion, objects changing place and transformations required to use omnidirectional images. As a solution, Labbani-Igbida et al. propose to compute signatures for each omnidirectional image based on invariant Haar integrals. Signatures are numbers that capture distinctive features in the image (color, shape, texture, interest points…). By comparing signatures between images (similarity), the robot is able to determine in what room it is and at what location much faster than having to process the raw images.

Experiments were conducted using a Koala robot equipped with a paracatadioptric omnidirectional sensor. The robot was first placed in different rooms of an office environment where it took images to build a visual memory. The robot was then set loose to explore the office including places in the environment that had not been previously visited during the memory building phase.

Results show that the robot is able to do space recognition and localization in ways that outperform or perform similarly to state-of-the-art algorithms while being very time and memory efficient. In the future, authors would like to limit the number of images needed for the robot to build its visual memory.




Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :



Robot Talk Episode 55 – Sara Adela Abad Guaman

In the first episode of the new season, Claire chatted to Dr. Sara Adela Abad Guaman from University College London about adaptable robots inspired by nature.
30 September 2023, by

A short guide to Multidisciplinary Research

How and Why would I consider colliding two opposite disciplines in my research.
27 September 2023, by

Robo-Insight #5

In this fifth edition, we are excited to feature robot progress in human-robot interaction, agile movement, enhanced training methods, soft robotics, brain surgery, medical navigation, and ecological research. 
25 September 2023, by

Soft robotic tool provides new ‘eyes’ in endovascular surgery

The magnetic device can help visualise and navigate complex and narrow spaces.

‘Brainless’ robot can navigate complex obstacles

Researchers who created a soft robot that could navigate simple mazes without human or computer direction have now built on that work, creating a “brainless” soft robot that can navigate more complex and dynamic environments.
21 September 2023, by

Battery-free origami microfliers from UW researchers offer a new bio-inspired future of flying machines

Researchers at the University of Washington present battery-free microfliers that can change shape in mid-air to vary their dispersal distance.





©2021 - ROBOTS Association


 












©2021 - ROBOTS Association