Robohub.org
 

Place recognition and localization with omnidirectional vision

by
09 May 2011



share this:

Let’s say you just purchased a new service robot and you want it to be able to know its way in your apartment. The obvious thing to do would be to show it around, going from room to room saying “this is the living room” and “this is the kitchen”. The robot, equipped with an omnidirectional camera, could then take pictures along the way while recording its location. This will build-up its visual memory of the apartment. The challenge for the robot next time around is to figure out in what room it is (place recognition) and where it is in this room (localization) based on its current view of the world.

This requires finding a good way to compare new images to the robot’s visual memory. The comparison needs to be robust to robot motion, objects changing place and transformations required to use omnidirectional images. As a solution, Labbani-Igbida et al. propose to compute signatures for each omnidirectional image based on invariant Haar integrals. Signatures are numbers that capture distinctive features in the image (color, shape, texture, interest points…). By comparing signatures between images (similarity), the robot is able to determine in what room it is and at what location much faster than having to process the raw images.

Experiments were conducted using a Koala robot equipped with a paracatadioptric omnidirectional sensor. The robot was first placed in different rooms of an office environment where it took images to build a visual memory. The robot was then set loose to explore the office including places in the environment that had not been previously visited during the memory building phase.

Results show that the robot is able to do space recognition and localization in ways that outperform or perform similarly to state-of-the-art algorithms while being very time and memory efficient. In the future, authors would like to limit the number of images needed for the robot to build its visual memory.




Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :



Robot Talk Episode 89 – Simone Schuerle

In the latest episode of the Robot Talk podcast, Claire chatted to Simone Schuerle from ETH Zürich all about microrobots, medicine and science.
14 June 2024, by

Robot Talk Episode 88 – Lord Ara Darzi

In the latest episode of the Robot Talk podcast, Claire chatted to Lord Ara Darzi from Imperial College London all about robotic surgery - past, present and future.
07 June 2024, by

Robot Talk Episode 87 – Isabelle Ormerod

In the latest episode of the Robot Talk podcast, Claire chatted to Isabelle Ormerod from the University of Bristol all about human-centred design and women in robotics.
31 May 2024, by

Robot Talk Episode 86 – Mario Di Castro

In the latest episode of the Robot Talk podcast, Claire chatted to Mario Di Castro from CERN all about robotic inspection and maintenance in hazardous environments.
24 May 2024, by

Congratulations to the #ICRA2024 best paper winners

The winners and finalists in the different categories have been announced.
20 May 2024, by

Robot Talk Episode 85 – Margarita Chli

In the latest episode of the Robot Talk podcast, Claire chatted to Margarita Chli from the University of Cyprus all about vision, navigation, and small aerial drones.
17 May 2024, by





Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association