Place recognition and localization with omnidirectional vision

09 May 2011

share this:

Let’s say you just purchased a new service robot and you want it to be able to know its way in your apartment. The obvious thing to do would be to show it around, going from room to room saying “this is the living room” and “this is the kitchen”. The robot, equipped with an omnidirectional camera, could then take pictures along the way while recording its location. This will build-up its visual memory of the apartment. The challenge for the robot next time around is to figure out in what room it is (place recognition) and where it is in this room (localization) based on its current view of the world.

This requires finding a good way to compare new images to the robot’s visual memory. The comparison needs to be robust to robot motion, objects changing place and transformations required to use omnidirectional images. As a solution, Labbani-Igbida et al. propose to compute signatures for each omnidirectional image based on invariant Haar integrals. Signatures are numbers that capture distinctive features in the image (color, shape, texture, interest points…). By comparing signatures between images (similarity), the robot is able to determine in what room it is and at what location much faster than having to process the raw images.

Experiments were conducted using a Koala robot equipped with a paracatadioptric omnidirectional sensor. The robot was first placed in different rooms of an office environment where it took images to build a visual memory. The robot was then set loose to explore the office including places in the environment that had not been previously visited during the memory building phase.

Results show that the robot is able to do space recognition and localization in ways that outperform or perform similarly to state-of-the-art algorithms while being very time and memory efficient. In the future, authors would like to limit the number of images needed for the robot to build its visual memory.

Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory

Related posts :

Call for robot holiday videos 2022

That’s right! You better not run, you better not hide, you better watch out for brand new robot holiday videos on Robohub!
02 December 2022, by

The Utah Bionic Leg: A motorized prosthetic for lower-limb amputees

Lenzi’s Utah Bionic Leg uses motors, processors, and advanced artificial intelligence that all work together to give amputees more power to walk, stand-up, sit-down, and ascend and descend stairs and ramps.

Touch sensing: An important tool for mobile robot navigation

Proximal sensing often is a blind spot for most long range sensors such as cameras and lidars for which touch sensors could serve as a complementary modality.
29 November 2022, by

Study: Automation drives income inequality

New data suggest most of the growth in the wage gap since 1980 comes from automation displacing less-educated workers.
27 November 2022, by

Flocks of assembler robots show potential for making larger structures

Researchers make progress toward groups of robots that could build almost anything, including buildings, vehicles, and even bigger robots.
25 November 2022, by

Holiday robot wishlist for/from Women in Robotics

Are you looking for a gift for the women in robotics in your life? Or the up and coming women in robotics in your family? Perhaps these suggestions from our not-for-profit Women in Robotics organization will inspire!
24 November 2022, by and

©2021 - ROBOTS Association


©2021 - ROBOTS Association