Robohub.org
 

Pushing Back Deserts through Aerial Seeding

by
28 May 2016



share this:


SourceLicense — Photo unmodified from original.

Start with a seed ball, containing seeds of one or more drought tolerant plants.

Next assemble some feathers or vanes, rather like those found on a badminton shuttlecock, but with an adaxial (inner) surface that is both a good radiator of thermal energy and hydrophobic, or having a branching network of hydrophobic veins which converge at the stem end.

Attach the feathers/vanes to the seed ball to form a seed bomb, and experiment iteratively to refine the design. The combination of mass and terminal velocity in free fall must be such that the seed bomb will penetrate dry clay soil surfaces sufficiently to anchor itself against wind, and the feathers or vanes should open up like a flower upon impact and remain in that configuration thereafter. This may require spring-loaded anchors that are triggered by the impact, to keep winds from tearing the seed bomb loose from the soil by its feathers/vanes.

Equip an aircraft with sensors that enable automatic determination of whether there are any people, domestic animals, or wildlife below and use this information to avoid harming them by interrupting the release of seed bombs. Drop the seed bombs near the desert’s edge, where there is occasional rainfall, but not enough to support grazing, much less agriculture. Where there is enough rainfall to support grazing, a different type of seed bomb should be used.

Even without precipitation, so long as there is some humidity in the air, condensation (dew) will collect on the inner, now upward-facing radiative surfaces of feathers/vanes, from where it will run down towards the seed ball due to their hydrophobic character.

In this manner, it should be possible to establish greenery at the edge of a desert, with the effect of locally altering the climate, perhaps enough so that a few years later another swath, closer to the center of the desert, can be seeded.




John Payne





Related posts :



How robots learn to hike

A new control approach that enables a legged robot, called ANYmal, to move quickly and robustly over difficult terrain.
20 January 2022, by

How robots and bubbles could soon help clean up underwater litter

Everyone loves to visit the seaside, whether to enjoy the physical benefits of an exhilarating swim or simply to relax on the beach and catch some sun. But these simple life affirming pleasures are easily ruined by the presence of litter, which if persistent can have a serious negative impact on both the local environment and economy. However, help is at hand to ensure the pristine nature of our coastlines.
19 January 2022, by

Maria Gini wins the 2022 ACM/SIGAI Autonomous Agents Research Award

Congratulations to Maria Gini on winning this prestigious award, recognising her research and leadership in the field of robotics and multi-agent systems.
18 January 2022, by

UN fails to agree on ‘killer robot’ ban as nations pour billions into autonomous weapons research

Given the pace of research and development in autonomous weapons, the U.N. meeting might have been the last chance to head off an arms race.
16 January 2022, by

Science Magazine robot videos 2021

A compilation of Science Magazine videos featuring robotics research that were released during last year.
14 January 2022, by

CBQ: Commercial-grade Autonomous Mowers, Safety, and Dogfooding | Sense Think Act Podcast #11

In this episode, Audrow Nash speaks to Charles Brian Quinn (aka, CBQ), CEO and a Co-Founder of Greenzie. Greenzie make an autonomous driving system for commercial lawn mowers. We talk about Greenzie's...
11 January 2022, by and





©2021 - ROBOTS Association


 












©2021 - ROBOTS Association