Robohub.org
 

Researchers are teaching robots to walk on Mars from the sand of New Mexico


by
02 September 2025



share this:

Scientists and robot at White Sands National Park.

By Sean Nealon

Researchers are closer to equipping a dog-like robot to conduct science on the surface of Mars after five days of experiments this month at White Sands National Park in New Mexico.

The national park is serving as a Mars analog environment and the scientists are conducting field test scenarios to inform future Mars operations with astronauts, dog-like robots known as quadruped robots, rovers and scientists at Mission Control on Earth. The work builds on similar experiments by the team with the same robot on the slopes of Mount Hood in Oregon, which simulated the landscape on the Moon.

“Our group is very committed to putting quadrupeds on the Moon and on Mars,” said Cristina Wilson, a robotics researcher in the College of Engineering at Oregon State University. “It’s the next frontier and takes advantage of the unique capabilities of legged robots.”

The NASA-funded project supports the agency’s Moon to Mars program, which is developing the tools for long-term lunar exploration and future crewed missions to Mars. It builds on research that has enabled NASA to send rovers and a helicopter to Mars.

The LASSIE Project: Legged Autonomous Surface Science in Analog Environments includes engineers, cognitive scientists, geoscientists and planetary scientists from Oregon State, the University of Southern California, Texas A&M University, the Georgia Institute of Technology, the University of Pennsylvania, Temple University and NASA Johnson Space Center.

The field work this month at White Sands was the second time the research team visited the national park. They made the initial trip in 2023 and also made trips in 2023 and 2024 to Mount Hood. During these field sessions, the scientists gather data from the feet of the quadruped robots, which can measure mechanical responses to foot-surface interactions.

“In the same way that the human foot standing on ground can sense the stability of the surface as things shift, legged robots are capable of potentially feeling the exact same thing,” Wilson said. “So each step the robot takes provides us information that will help its future performance in places like the Moon or Mars.”

Quadruped robot.

The conditions at White Sands this month were challenging. Triple-digit high temperatures meant the team started field work at sunrise and wrapped by late morning because of the rising heat index and its impact on the researchers and the power supply to the robots.

But the team made important progress. Improvements to the algorithms they have refined in recent years led for the first time to the robot acting autonomously and making its own decisions.

This is important, Wilson noted, because in a scenario where the quadruped would be on the surface of Mars with an astronaut, it would allow both the robot and the astronaut to act independently, increasing the amount of scientific work that could be accomplished.

They also tested advances they have made in developing different ways for the robot to move depending on surface conditions, which could lead to increased energy efficiency, Wilson said.

“There is certainly a lot more research to do, but these are important steps in realizing the goal of sending quadrupeds to the Moon and Mars,” Wilson said.

Other leaders of the project include Feifei Qian, USC; Ryan Ewing and Kenton Fisher, NASA Johnson Space Center; Marion Nachon, Texas A&M; Frances Rivera-Hernández, Georgia Tech; Douglas Jerolmack and Daniel Koditschek, University of Pennsylvania; and Thomas Shipley, Temple University.

The research is funded by the NASA Planetary Science and Technology through Analog Research (PSTAR) program, and Mars Exploration Program.




Oregon State University





Related posts :



Robot Talk Episode 131 – Empowering game-changing robotics research, with Edith-Clare Hall

  31 Oct 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Edith-Clare Hall from the Advanced Research and Invention Agency about accelerating scientific and technological breakthroughs.

A flexible lens controlled by light-activated artificial muscles promises to let soft machines see

  30 Oct 2025
Researchers have designed an adaptive lens made of soft, light-responsive, tissue-like materials.

Social media round-up from #IROS2025

  27 Oct 2025
Take a look at what participants got up to at the IEEE/RSJ International Conference on Intelligent Robots and Systems.

Using generative AI to diversify virtual training grounds for robots

  24 Oct 2025
New tool from MIT CSAIL creates realistic virtual kitchens and living rooms where simulated robots can interact with models of real-world objects, scaling up training data for robot foundation models.

Robot Talk Episode 130 – Robots learning from humans, with Chad Jenkins

  24 Oct 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Chad Jenkins from University of Michigan about how robots can learn from people and assist us in our daily lives.

Robot Talk at the Smart City Robotics Competition

  22 Oct 2025
In a special bonus episode of the podcast, Claire chatted to competitors, exhibitors, and attendees at the Smart City Robotics Competition in Milton Keynes.

Robot Talk Episode 129 – Automating museum experiments, with Yuen Ting Chan

  17 Oct 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Yuen Ting Chan from Natural History Museum about using robots to automate molecular biology experiments.

What’s coming up at #IROS2025?

  15 Oct 2025
Find out what the International Conference on Intelligent Robots and Systems has in store.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence