Robohub.org
 

Robot bodies and how to evolve them

by
16 January 2015



share this:
Robot-DNA_evolution

Evolutionary robotics has been around for about 20 years: it’s about 15 years since Stefano Nolfi and Dario Floreano published their seminal book on the subject. Yet, surprisingly the number of real, physical robots whose bodies have been evolved can be counted on the fingers of one hand. The vast majority of ER research papers are concerned with the evolution of robot brains – the robot’s control system. Or, when robot bodies are evolved often the robot is never physically realised. This seems to me very odd, given that robots are real physical artefacts whose body shape – morphology – is deeply linked to their role and function.

The question of how to evolve real robot bodies and why we don’t appear to have made much progress in the last 15 years was the subject of my keynote at the IEEE International Conference on Evolvable Systems (ICES 2014) in Orlando, last month. Here are my slides:

The talk was in three parts.

In part one I outlined the basic approach to evolving robots using the genetic algorithm, referring to figure 18: The four-stage process of Evolutionary Robotics, from chapter 5 of my book:

I then reviewed the state-of-the-art in evolving real robot bodies, starting with the landmark Golem project of Hod Lipson and Jordan Pollack, referencing both Henrik Lund and Josh Bongard’s work on evolving Lego robots, then concluding with the excellent RoboGen project of Josh Auerbach, Dario Floreano and colleagues at EPFL. Although conceptually RoboGen has not moved far from Golem, it makes the co-evolution of robot hardware and controllers accessible for the first time, through the use of 3D-printable body parts that are compatible with servo-motors, and a very nice open-source toolset which integrates all stages of the simulated evolutionary process.

RoboGen, Golem and, as far as I’m aware, all work on evolving real physical robot bodies to date has used the simulate-then-transfer-to-real approach, in which the whole evolutionary process – including fitness testing – takes place in simulation and only the final ‘fittest’ robot is physically constructed. Andrew Nelson and colleagues in their excellent review paper point out the important distinction between simulate-then-transfer-to-real, and embodied evolution in which the whole process takes place in the real world – in real-time and real-space.

In part two of the talk I outlined two approaches to embodied evolution. The first I call an engineering approach, in which the process is completely embodied but takes place in a kind of evolution factory; this approach needs a significant automated infrastructure: instead of a manufactory we need an evofactory. The second approach I characterise as an artificial life approach. Here there is no infrastructure. Instead ‘smart matter’ somehow mates then replicates offspring over multiple generations in a process much more analogous to biological evolution. This was one of the ambitious aims of the Symbrion project which, sadly, met with only limited success. Trying to make mechanical robots behave like evolving smart matter is really tough.

Part three concluded by outlining a number of significant challenges to evolving real robot bodies. First I reflect on the huge challenge of evolving complexity. To date we’ve only evolved very simple robots with very simple behaviours, or co-evolved simple brain/body combinations. I’m convinced that evolving robots of greater (and useful) complexity requires a new approach. We will, I think, need to understand how to co-evolve robots and their ecosystems*. Second I touch upon a related challenge: genotype-phenotype mapping. Here I refer to Pfeifer and Bongard’s scalable complexity principle – the powerful idea that we shouldn’t evolve robots directly, but instead the developmental process that will lead to the robot, i.e. artificial evo-devo. Finally I raise the often overlooked challenge of the energy cost of artificial evolution.

But the biggest challenge remains essentially what it was 20 years ago: to fully realise the artificial evolution of real robots.


Some of the work of this talk is set out in forthcoming paper: AFT Winfield and J Timmis, Evolvable Robot Hardware, in Evolvable Hardware, eds M Trefzer  and A Tyrrell, Springer, in press.

*I touch upon this in the final para of my paper on the energy cost of evolution here.


tags:


Alan Winfield is Professor in robotics at UWE Bristol. He communicates about science on his personal blog.
Alan Winfield is Professor in robotics at UWE Bristol. He communicates about science on his personal blog.





Related posts :



Breaking through the mucus barrier

A capsule that tunnels through mucus in the GI tract could be used to orally administer large protein drugs such as insulin.
02 October 2022, by

Women in Tech leadership resources from IMTS 2022

There’ve been quite a few events recently focusing on Women in Robotics, Women in Manufacturing, Women in 3D Printing, in Engineering, and in Tech Leadership. One of the largest tradeshows in the US is IMTS 2022. Here I bring you some resources shared in the curated technical content and leadership sessions.
29 September 2022, by and

MIT engineers build a battery-free, wireless underwater camera

The device could help scientists explore unknown regions of the ocean, track pollution, or monitor the effects of climate change.
27 September 2022, by

How do we control robots on the moon?

In the future, we imagine that teams of robots will explore and develop the surface of nearby planets, moons and asteroids - taking samples, building structures, deploying instruments.
25 September 2022, by , and

Have a say on these robotics solutions before they enter the market!

We have gathered robots which are being developed right now or have just entered the market. We have set these up in a survey style consultation.
24 September 2022, by

Shelf-stocking robots with independent movement

A robot that helps store employees by moving independently through the supermarket and shelving products. According to cognitive robotics researcher Carlos Hernández Corbato, this may be possible in the future. If we engineer the unexpected.
23 September 2022, by





©2021 - ROBOTS Association


 












©2021 - ROBOTS Association