Robohub.org
 

Smart soft robotics for stroke rehabilitation

by
09 November 2017



share this:

The culmination of work by Alistair C. McConnell (lead-researcher) through his PhD and the SOPHIA team, the Soft Orthotic Physiotherapy Hand Interactive Aid (SOPHIA) forms the foundation for our future research into Soft Robotic rehabilitation systems.

Through Alistair’s research, it became apparent that there was a lack of stroke rehabilitation systems for the hand, that could be used in a domestic environment and monitor both physical and neural progress. Alistair conducted a thorough review of the literature to fully explore the state of the art, and apparent lack of this type of rehabilitation system. This review investigated the development of both Exoskeleton and End-Effector based systems to examine how this point was reached and what gaps and issues still occurred.
From this review and discussions with physiotherapists, we developed an idea for a brain machine controlled soft robotic system. The “Soft Orthotic Physiotherapy Hand Interactive Aid” (SOPHIA) needed to provide rehabilitation aid in two forms, passive and active:
• Passive rehabilitation, where the subject performs their exercises, and this is reflected in a 3D representation on a screen, and all the data is stored for analysis.
• Active rehabilitation, where the subject attempts to open their hand and if the full extension is not achieved in a designated time, the system provides the extra force needed.

Through a grant from the Newton Fund we developed the SOPHIA system, which consists of a soft robotic exoskeleton with a set of pneunets actuators providing the force for the fingers of a hand to be fully extended, and an electropneumatic control system containing the required diaphragm pumps, valves and sensors in a compact modular unit.
The inclusion of a Brain Machine Interface (BMI) allowed us to use motor imagery techniques, where the electroencephalogram signal from the subject could be used as a trigger for the extension motion of the hand, augmenting the active rehabilitation.
We designed the system to accept input from two different BMI devices, and compared a wired, high-end BMI with a low-cost, wireless BMI. By applying machine-learning approaches we were able to narrow down the differences in these two input systems, and our approach enabled the inexpensive system to perform at the same-level as the high-end system.

You can find further information on the SOPHIA system and the current state of the art in robotic devices and brain-machine interfaces for hand rehabilitation in our recent journal publications.

SOPHIA: Soft Orthotic Physiotherapy Hand Interactive Aid: 
https://www.frontiersin.org/articles/10.3389/fmech.2017.00003/full

Robotic devices and brain-machine interfaces for hand rehabilitation post-stroke: 
https://www.ncbi.nlm.nih.gov/pubmed/28597018




Adam Stokes is a Lecturer in the Institute for Micro and Nano Systems (IMNS) at The University of Edinburgh.
Adam Stokes is a Lecturer in the Institute for Micro and Nano Systems (IMNS) at The University of Edinburgh.





Related posts :



At the forefront of building with biology

Raman is, as she puts it, “a mechanical engineer through and through.” Today, Ritu Raman leads the Raman Lab and is an Assistant Professor in the Department of Mechanical Engineering.
28 June 2022, by

Hot Robotics Symposium celebrates UK success

An internationally leading robotics initiative that enables academia and industry to find innovative solutions to real world challenges, celebrated its success with a Hot Robotics Symposium hosted across three UK regions last week.
25 June 2022, by

Researchers release open-source photorealistic simulator for autonomous driving

MIT scientists unveil the first open-source simulation engine capable of constructing realistic environments for deployable training and testing of autonomous vehicles.
22 June 2022, by

In this episode, Audrow Nash speaks to Maria Telleria, who is a co-founder and the CTO of Canvas. Canvas makes a drywall finishing robot and is based in the Bay Area. In this interview, Maria talks ab...
21 June 2022, by and

Coffee with a Researcher (#ICRA2022)

As part of her role as one of the IEEE ICRA 2022 Science Communication Awardees, Avie Ravendran sat down virtually with a few researchers from academia and industry attending the conference.

Seeing the robots at #ICRA2022 through the eyes of a robot

Accessbility@ICRA2022 and OhmniLabs provided three OhmniBots for the conference, allowing students, faculty and interested industry members to attend the expo and poster sessions.
17 June 2022, by





©2021 - ROBOTS Association


 












©2021 - ROBOTS Association