Robohub.org
 

Social learning


by
29 August 2010



share this:

Robots are portrayed as tomorrows helpers, be it in schools, hospitals, workplaces or homes. Unfortunately, such robots won’t be truly useful out-of-the-box because of the complexity of real-world environments and tasks. Instead, they will need to learn how to interact with objects in their environment to produce a desired outcome (affordance learning).

For this purpose, robots can explore the world while using machine learning techniques to update their knowledge. However, the learning process is sometimes saturated with examples of objects, actions and effects that won’t help the robot in its purpose.

In these cases, humans or other social partners can help direct robot learning (social learning). Most studies have focussed on scenarios where a teacher demonstrates how to correctly do a task. The robot then imitates the teacher by reproducing the same actions to achieve the same goals.

This approach, while being very efficient, typically means that the teacher needs to take time to train the robot, which can be burdensome. Furthermore, the robot might be so specialized for the demonstrated scenario that it will have trouble performing tasks that slightly differ. In addition, imitation only works when the teacher and robot have similar motion constraints and morphologies.

Luckily, humans and animals use a large variety of mechanisms to learn from social partners. Tapping into this reservoir, Cakmak et al. propose mechanisms where:
– robots interact with the same objects as the social partner (stimulus enhancement)
– robots try to achieve the same effect on the same object as the social partner (emulation)
– robots reproduce the same action as the social partner (mimicking)

Experiments performed in simulation compare stimulus enhancement, emulation, mimicking, imitation and non-social learning in a large variety of situations. The results summarize which mechanisms are better suited for which scenarios in a series of very useful guidelines. Demonstrations with two robots, Jimmy and Jane, were done to validate the study. Don’t miss the excellent video below for a summary of the article.

In the future, Cakmak et al. will focus on combining learning approaches to harness the full potential of this rich set of mechanisms.



tags:


Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :



Robot Talk Episode 126 – Why are we building humanoid robots?

  20 Jun 2025
In this special live recording at Imperial College London, Claire chatted to Ben Russell, Maryam Banitalebi Dehkordi, and Petar Kormushev about humanoid robotics.

Gearing up for RoboCupJunior: Interview with Ana Patrícia Magalhães

and   18 Jun 2025
We hear from the organiser of RoboCupJunior 2025 and find out how the preparations are going for the event.

Robot Talk Episode 125 – Chatting with robots, with Gabriel Skantze

  13 Jun 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Gabriel Skantze from KTH Royal Institute of Technology about having natural face-to-face conversations with robots.

Preparing for kick-off at RoboCup2025: an interview with General Chair Marco Simões

and   12 Jun 2025
We caught up with Marco to find out what exciting events are in store at this year's RoboCup.

Interview with Amar Halilovic: Explainable AI for robotics

  10 Jun 2025
Find out about Amar's research investigating the generation of explanations for robot actions.

Robot Talk Episode 124 – Robots in the performing arts, with Amy LaViers

  06 Jun 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Amy LaViers from the Robotics, Automation, and Dance Lab about the creative relationship between humans and machines.

Robot Talk Episode 123 – Standardising robot programming, with Nick Thompson

  30 May 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Nick Thompson from BOW about software that makes robots easier to program.

Congratulations to the #AAMAS2025 best paper, best demo, and distinguished dissertation award winners

  29 May 2025
Find out who won the awards presented at the International Conference on Autonomous Agents and Multiagent Systems last week.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2025.05 - Association for the Understanding of Artificial Intelligence


 












©2025.05 - Association for the Understanding of Artificial Intelligence